Regulation of the Immune Response: A Discrete Mapping Approach

  • M. Kaufman
Part of the Springer Series in Synergetics book series (SSSYN, volume 46)


Experimental studies have shown that prior exposure of a host to antigen modifies its subsequent antibody-response to the same antigen. In particular, low or high primary antigen doses can lead to reduced secondary responses, while medium doses increase the sensitivity to a next challenge /1,2/. In more general terms, a first encounter of a host with antigen can induce either a state of immunological memory or a state of immunological paralysis, depending on the nature or form of the antigen, on the dose and the way in which it is administered, and on the state of the host. Both these memory and paralysis phenomena reflect the behavior of the cells that interact in the course of an immune response, namely the B and T lymphocytes. B lymphocytes repond to antigen by proliferating and differentiating to plasma cells, the terminal antibody producing cells. T lymphocytes function as regulatory cells and can be classified into T helper cells (TH) which cooperate with the B cells to bring about an effective response, and T suppressor cells (TS) which exert inhibitory effects thereby contributing to the decay in time of the response. The outcome of an immune response should depend crucially on the balance between these two competing effects.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N.A. Mitchison: In Regulation and the Antibody Response, ed. by dB. Cinader (Thomas Springfield, Illinois, 1969).Google Scholar
  2. 2.
    G.R. Shellam, G.J. Nossal: Immunology 14, 273 (1968).PubMedGoogle Scholar
  3. 3.
    M. Kaufman, J. Urbain, R. Thomas: J. Theor. Biol. 114, 527 (1985).PubMedCrossRefGoogle Scholar
  4. 4.
    M. Kaufman, R. Thomas: J. Theor. Biol. 129, 141 (1987).PubMedCrossRefGoogle Scholar
  5. 5.
    M. Kaufman: In Theoretical Immunology, ed. by A. Perelson Addison Wesley Pu. Co, Inc., 1988).Google Scholar
  6. 6.
    G. Nossal: Ann. Rev. Immunol. 1, 33 (1983).CrossRefGoogle Scholar
  7. 7.
    D.R. Green, P.M. Flood, R.K. Gershon: Ann. Rev. Immunol. 1, 439 (1983).CrossRefGoogle Scholar
  8. 8.
    G.K. Sim, I.A. McNeil, A.A. Augustin: Immunol. Rev. 90, 49 (1986).PubMedCrossRefGoogle Scholar
  9. 9.
    G.W. Hoffmann: Contemp. Topics in Immunobiol. 11, 185 (1980).Google Scholar
  10. 10.
    M. Kaufman, J. Urbain: In Theoretical Models for Cell to Cell Signalling, ed. by A. Goldbeter (Academic Fress, London, in press).Google Scholar
  11. 11.
    E.H. Snoussi: Dynamics and Stability of Systems, in press (1989).Google Scholar
  12. 12.
    R. Thomas, R. d’Ari: In Biological Feedbacks, (CRC Press, Boca Raton, Florida, in press).Google Scholar
  13. 13.
    P. Van Ham: In Dynamical Systems and Cellular Automata, ed. J. Demongeot, E. Golès, M. Tchuente (Academic Press, London, 1985).Google Scholar
  14. 14.
    G. Weisbuch, H. Atlan: J. Phys.A: Math. Gen. 21, L189 (1988).CrossRefGoogle Scholar
  15. 15.
    N.K. Jerne: Ann. Immunol. (Inst. Pasteur) 125C, 373 (1974).Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1989

Authors and Affiliations

  • M. Kaufman
    • 1
  1. 1.Faculté des Sciences, Service de Chimie PhysiqueUniversité Libre de BruxellesBruxellesBelgium

Personalised recommendations