Skip to main content

Anaerobic Metabolism Within the Brain: Its Relationship to Brain Failure in Head-Injured Patients

  • Conference paper
Book cover Brain Failure

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 9))

Abstract

Anaerobic glycolysis is a characteristic feature of central nervous system ischemic metabolism. With complete cerebral ischemia, such as occurs with cardiac arrest, oxygen supplies are depleted within 30s. Oxidative phosphorylation ceases, but endogenous stores of glucose maintain anaerobic glycolysis for a few moments. The amount of lactic acid accumulation is primarily dependent upon the preischemia tissue glucose stores, which are proportional to the blood glucose concentration. After 2–3 min, ATP stores become depleted, and the adeny-late energy charge reaches minimal values after approximately 5 min.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bowers SA, Marshall LF (1980) Outcome in 200 consecutive cases of severe head injury treated in San Diego County: a prospective analysis. Neurosurgery 6:237–242

    Article  PubMed  CAS  Google Scholar 

  2. Graham DI, Adam JH, Doyle D (1978) Ischaemic brain damage in fatal non-missile brain injuries. J Neurol Sci 39:213–234

    Article  PubMed  CAS  Google Scholar 

  3. Lewelt W, Jenkins LW, Miller JD (1980) Autoregulation of cerebral blood flow after experimental fluid percussion injury. J Neurosurgery 53:500–511

    Article  CAS  Google Scholar 

  4. Wei EP, Dietrich WD, Povlishock JT, Navari RM, Kontos HA (1980) Functional, morphological, and metabolic abnormalities of the cerebral microcirculation after concussive brain injury in cats. Circ Res 46:37–47

    PubMed  CAS  Google Scholar 

  5. Miller JD (1985) Head injury and brain ischaemia-implications for therapy. Br J Anaesth 57:120–129

    Article  PubMed  CAS  Google Scholar 

  6. Neufield P, Pitts L, Kaktis JV (1980) The influence of shock on mortality after head trauma. Crit Care Med 8:254

    Article  Google Scholar 

  7. Ishige N, Pitts LH, Berry I, Nishimura MC, James TL (1988) The effects of hypovolemic hypotension on high-energy phosphate metabolism in traumatized brain in rats. J Neurosurg 68:129–136

    Article  PubMed  CAS  Google Scholar 

  8. Friedenfelt H, Sunstrom R (1963) Local and general spasm in the internal carotid system following trauma. Acta Radiol (Diagn) 1:278–283

    Google Scholar 

  9. Suwanweh C, Suwanweh N (1972) Intracranial arterial narrowing and spasm in acute head injury. J Neurosurg 26:314–323

    Google Scholar 

  10. Wilkins RH, Odom GL (1970) Intracranial arterial spasm associated with craniocerebral trauma. J Neurosurg 32:626–633

    Article  PubMed  CAS  Google Scholar 

  11. MacPherson P, Graham DI (1978) Correlation between angiographie findings and the ischemia of head injury. J Neurol Neurosurg Psychiat 41:122–127

    Article  PubMed  CAS  Google Scholar 

  12. Morgan MK, Besser M, Johnston I, Chaseling R (1987) Intracranial carotid artery injury in closed head trauma. J Neurosurg 66:192–197

    Article  PubMed  CAS  Google Scholar 

  13. Hansen AJ (1978) The extracellular potassium concentration in brain cortex following ischemia in hypo-and hyperglycemie rats. Acta Physiol Scand 102:324–329

    Article  PubMed  CAS  Google Scholar 

  14. Ginsberg MD, Welsh FA, Budd WW (1980) Deleterious effect of glucose pretreatment on recovery from diffuse cerebral ischemia in the cat. I. Local cerebral blood flow and glucose utilization. Stroke 11:347–354

    Article  PubMed  CAS  Google Scholar 

  15. Myers RE, Yamaguchi M (1976) Effects of serum glucose concentration on brain response to circulatory arrest. J Neuropathol Exp Neurol 35:301

    Article  Google Scholar 

  16. Rehncrona S, Roser I, Siesjö BK: Brain lactic acidosis and ischemie cell damage. 1. Biochemistry and neurophysiology. J Cereb Blood Flow Metab 1:297–311

    Google Scholar 

  17. Siemkowicz E, Hansen AJ (1978) Clinical restitution following cerebral ischemia in hypo-, normo-, and hyperglycemie rats. Acta Neurol Scand 58:1–8

    Article  PubMed  CAS  Google Scholar 

  18. Robertson CS, Grossman RG (1987) Protection against spinal cord ischemia with insulin-induced hypoglycemia. J Neurosurg 67:739–744

    Article  PubMed  CAS  Google Scholar 

  19. Cold G, Enevoldsen E, Malmros R (1975) Ventricular fluid lactate, pyruvate, bicarbonate, and pH in unconscious brain-injured patients subjected to controlled ventilation. Acta Neurol Scand 52:187–195

    Article  PubMed  CAS  Google Scholar 

  20. Crockard HA, Taylor AR (1972) Serial CSF lactate/pyruvate values as a guide to prognosis in head injury coma. Eur Neurol 8:151–157

    Article  PubMed  CAS  Google Scholar 

  21. Enevoldsen EM, Cold G, Jensen FT, Malmros R (1976) Dynamic changes in regional CBF, intraventricular pressure, CSF pH, and lactate levels during the acute phase of head injury. J Neurosurg 44:191–214

    Article  PubMed  CAS  Google Scholar 

  22. King LR, McLaurin RL, Knowles HC Jr (1974) Acid-base balance and arterial and CSF lactate levels following human head injury. J Neurosurg 40:617–625

    Article  PubMed  CAS  Google Scholar 

  23. Metzel E, Zimmerman WE (1971) Changes of oxygen pressure, acid-base balance, metabolites, and electrolytes in cerebrospinal fluid and blood after cerebral injury. Acta Neurochir 25:177–188

    Article  CAS  Google Scholar 

  24. Seitz HD, Ocker K (1977) The prognostic and therapeutic importance of changes in the CSF during the acute stage of brain injury. Acta Neurochir 38:211–231

    Article  CAS  Google Scholar 

  25. DeSalles AAF, Kontos HA, Becker DP, et al (1986) Prognostic significance of ventricular CSF lactic acidosis in severe head injury. J Neurosurg 65:615–624

    Article  Google Scholar 

  26. Robertson CS, Grossman RG, Goodman JC, Narayan RK (1987) The predictive value of cerebral anaerobic metabolism with cerebral infarction after head injury. J Neurosurg 67:361–368

    Article  PubMed  CAS  Google Scholar 

  27. Obrist WD, Langfitt TW, Jaggi JL, Cruz J, Gennarelli TA (1984) Cerebral blood flow and metabolism in comatose patients with acute head injury. Relationship to intracranial hypertension. J Neurosurg 61:241–253

    Article  PubMed  CAS  Google Scholar 

  28. Gregory PC, McGeorge AP, Fitch W, Graham DI, MacKenzie ET, Harper AM (1979) Effects of hemorrhagic hypotension on the cerebral circulation. II. Electrocortical function. Stroke 10:719–723

    Article  PubMed  CAS  Google Scholar 

  29. Williams LF Jr (1968) Hemorrhagic shock as a source of unconsciousness. Surg Clin N Am 48:236–272

    Google Scholar 

  30. Symon L (1985) Flow thresholds in brain ischaemia and the effects of drugs. Br J Anaesth 57:34–43

    Article  PubMed  CAS  Google Scholar 

  31. Trojaborg W, Boysen G (1973) Relation between EEG, regional cerebral blood flow and internal carotid artery pressure during carotid endarterectomy. Electroencephalogr Clin Neurophysiol 34:61–60

    Article  PubMed  CAS  Google Scholar 

  32. Branston NM, Symon L, Crockard HA, Pasztor E (1974) Relationship between the cortical evoked potential and focal cortical blood flow following acute middle cerebral artery occlusion in the baboon. Exp Neurol 45:195–208

    Article  PubMed  CAS  Google Scholar 

  33. Astrup J, Symon L, Branston NM, Lassen NA (1977) Cortical evoked potentials and extracellular K+ and H+ at critical levels of brain ischemia. Stroke 8:51–57

    Article  PubMed  CAS  Google Scholar 

  34. Hossman KA, Schuier FJ (1980) Experimental brain infarcts in cats. 1. Pathophysiological observations. Stroke 11:583–592

    Article  Google Scholar 

  35. Jones TH, Morawetz RB, Crowell RM, et al (1981) Thresholds of focal cerebral ischemia in awake monkeys. J Neurosurg 54:773–782

    Article  PubMed  CAS  Google Scholar 

  36. Robertson CS, Narayan RK, Gokaslan ZL, et al (1989) Cerebral arteriovenous oxygen difference as an estimate of cerebral blood flow in comatose patients. J Neurosurg (in press)

    Google Scholar 

  37. Kety SS, Schmidt CF (1945) The determination of cerebral blood flow in man by the use of nitrous oxide in low concentrations. Am J Physiol 143:53–66

    CAS  Google Scholar 

  38. Kety SS, Schmidt CF (1948) The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure, and normal values. J Clin Invest 27:476–483

    Article  Google Scholar 

  39. Swedlow DB, Lewis LE (1980) Measurement of cerebral blood flow in children. Anesthesiology 53(Suppl):S160

    Article  Google Scholar 

  40. Kety SS (1951) The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol Rev 3:1–41

    PubMed  CAS  Google Scholar 

  41. Shenkin HA, Harmel MH, Kety SS (1948) Dynamic anatomy of the cerebral circulation. Arch Neurol Psychiatry 60:242–252

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Robertson, C.S. (1989). Anaerobic Metabolism Within the Brain: Its Relationship to Brain Failure in Head-Injured Patients. In: Bihari, D., Holaday, J.W. (eds) Brain Failure. Update in Intensive Care and Emergency Medicine, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83929-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83929-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51655-2

  • Online ISBN: 978-3-642-83929-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics