Skip to main content

The Role of Lipid Peroxidation in Ischemic Central Nervous System Injury

  • Conference paper
Brain Failure

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 9))

  • 69 Accesses

Abstract

The role of lipid peroxidation as a key pathophysiological factor in tissue injury in vivo remains in dispute. Particularly contentious issues concern the initiation of lipid peroxidation and the role of iron in this event. An answer to these issues will depend on the advent of more precise and improved methods of measurement. Until then, evidence to support lipid peroxidation as a mediator of tissue injury will rely largely on current methods of detection and experimental observations that pharmacologie antagonism of oxygen radical generation and/or lipid peroxidation results in a therapeutic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aust SD, Morehouse LA, Thomas CE (1985) Role of metals in oxygen radical reactions. J Free Rad Biol Med 1:3–25

    Article  CAS  Google Scholar 

  2. Halliwell B, Gutteridge JMC (1985) Free radicals in biology and medicine. Claredon Press, Oxford

    Google Scholar 

  3. Miller JD (1985) Head injury and brain ischemia-implications for therapy. Br J Anaesth 57:120–129

    Article  PubMed  CAS  Google Scholar 

  4. Means ED, Anderson DK (1987) Pathophysiology of acute spinal cord injury. In: Davidoff RA (ed) Handbook of the spinal cord, vol 4–5. Dekker, New York, pp 19–61

    Google Scholar 

  5. Braughler JM, Hall ED (1989) Central nervous system trauma and stroke: biochemical considerations for oxygen radical formation and lipid peroxidation. J Free Rad Biol Med (inpress)

    Google Scholar 

  6. Thomas CE, Morehouse LA, Aust SD (1985) Ferritin and superoxide-dependent lipid peroxidation. J Biol Chem 260:3275–3280

    PubMed  CAS  Google Scholar 

  7. Fee JA (1982) On the question of Superoxide toxicity and the biological function of superoxide dismutases. In: King TE, Mason HS, Morrison M (eds) Oxidases and related redox systems. Pergamon Press, New York, pp 101–149

    Google Scholar 

  8. Girotti AW, Thomas JP (1984) Damaging effects of oxygen radicals on resealed erythrocyte ghosts. J Biol Chem 259:1744–1752

    PubMed  CAS  Google Scholar 

  9. Braughler JM, Duncan LA, Chase RL (1986) The involvement of iron in lipid peroxidation: importance of ferric to ferrous ratios in irritation. J Biol Chem 261:10282–10289

    PubMed  CAS  Google Scholar 

  10. Minotti G, Aust SD (1987) The requirement for ferric in initiation of lipid peroxidation by ferrous hydrogen peroxide. J Biol Chem 262:1098–1104

    PubMed  CAS  Google Scholar 

  11. Braughler JM, Chase RL, Pregenzer JF (1987) Oxidation of ferrous iron during peroxidation of lipid substrates. Biochim Biophys Acta 921:457–464

    PubMed  CAS  Google Scholar 

  12. Marker HS, Weiss C, Silides DJ, Cohen G (1981) Coupling of dopamine oxidation (monoamine oxidase acitivity) to glutathione oxidation via the generation of hydrogen peroxide in rat brain homogenates. J Neurochem 36:589–593

    Article  Google Scholar 

  13. Yamamoto S (1983) Enzymes in the arachidonic acid cascade. In: Pace-Ascieak C, Granstrom E (eds) Prostaglandins and related substances. Elsevier, Amsterdam, pp 171–202

    Chapter  Google Scholar 

  14. Fantone JC, Ward PA (1982) Role of oxygen-derived free radicals and metabolites in leukocyte-dependent inflammatory reactions. Am J Pathol 107:397–418

    CAS  Google Scholar 

  15. Sevaniar A, Kim E (1985) Phospholipase A2 dependent release of fatty acids from peroxidized membranes. J Free Rad Biol Med 1:263–271

    Article  Google Scholar 

  16. van Kuijk FIGM, Sevanian A, Handelman GJ, Dratz EA (1987) A new role for phospholipase A: protection of membranes from lipid peroxidation damage. TIBS 12:31–34

    Google Scholar 

  17. Siesjö BK (1981) Cell damage in the brain: a speculative synthesis. J Cereb Blood Flow Metab 1:155–185

    Article  PubMed  Google Scholar 

  18. Marcy VR, Welsh FA (1984) Correlation between cerebral blood flow and ATP content following tourniquet-induced ischemia in cat brain. J Cereb Blood Flow Metab 4:362–367

    Article  PubMed  CAS  Google Scholar 

  19. Welsh FA (1984) Acidosis and energy metabolism. In: Bes A, Braquet P, Paoletti R, Siesjö BK (eds) Elsevier, Amsterdam, pp 177–186

    Google Scholar 

  20. Siesjö BK (1984) Brain acid-base metabolism in health and disease. Cereb Blood Flow Metab 1:157–166

    Google Scholar 

  21. von Hanwehr R, Smith M, Siesjö BK (1986) Extra-and intra-cellular pH during nearcomplete forebrain ischemia in the rat. J Neurochem 46:331–339

    Article  Google Scholar 

  22. Young W, Rappaport ZH, Chalif DJ, Flamm ES (1987) Regional brain sodium, potassium and water changes in the middle cerebral artery occlusion model of ischemia. Stroke 18:751–759

    Article  PubMed  CAS  Google Scholar 

  23. Kleihues P, Kobayashi K, Hossmann KA (1974) Purine nucleotide metabolism in the cat brain after one hour of complete ischemia. J Neurochem 23:417–425

    Article  PubMed  CAS  Google Scholar 

  24. Batteli MG, Corte ED, Stripe F (1972) Xanthine oxidase type D (dehydrogenase) in the intestine and other organs of the rat. Biochem J 126:747–749

    Google Scholar 

  25. McCord JM (1985) Oxygen-derived free radicals in post ischemic tissue injury. N Engl J Med 312:159–163

    Article  PubMed  CAS  Google Scholar 

  26. McCord JM, Fridovich I (1968) The reduction of cytochrome c by milk xanthine oxidase. J Biol Chem 243:5753–5760

    PubMed  CAS  Google Scholar 

  27. Parks DA, Bulkley GB, Granger DN, Hamilton SR, McCord JM (1982) Ischemic injury in the cat small intestine: role of superoxide radicals. Gastroenterology 82:9–15

    PubMed  CAS  Google Scholar 

  28. Adkison D, Hollwarth ME, Benoit IN, Parks DA, McCord JM, Granger DN (1986) Role of free radicals in ischemia-reperfusion injury to the liver. Acta Physiol Scand (suppl) 548:101–107

    CAS  Google Scholar 

  29. Im MJ, Manson PN, Bulkley GB, Hoopes JE (1985) Effects of Superoxide dismutase and allopurinol on the survival of acute island skin flaps. Ann Surg 201:357–359

    Article  PubMed  CAS  Google Scholar 

  30. Chambers DE, Parks DA, Patterson G, et al (1985) Xanthine oxidase as a source of free radical damage in myocardial ischemia. J Mol Cell Cardiol 17:145–152

    Article  PubMed  CAS  Google Scholar 

  31. Moorhouse PC, Grootveld M, Halliwell B, Quinlan JG, Gutteridge JMC (1987) Allopurinol and oxypurinol are hydroxyl radical scavengers. FEBS Lett 213:23–28

    Article  PubMed  CAS  Google Scholar 

  32. Chan PH, Schmidley JW, Fishman RA, Langar SM (1984) Brain injury, edema, and vascular permeability changes induced by oxygen-derived free radicals. Neurology 34:315–320

    PubMed  CAS  Google Scholar 

  33. Cerchiari EL, Hoel TM, Safar P, Schlabassi RI (1987) Protective effects of combined superoxide dismutase and desferrioxamine on recovery of cerebral blood flow and function after cardiac arrest in dogs. Stroke 18:869–878

    Article  PubMed  CAS  Google Scholar 

  34. Badylak SF, Babbs CF, Kougias C, Blaho K (1986) Effect of allopurinol and dimethylsulfoxide on long-term survival in rats after cardiorespiratory arrest and resuscitation. Am J Emerg Med 4:313–318

    Article  PubMed  CAS  Google Scholar 

  35. Kontos HA, Wei EP (1986) Superoxide production in experimental brain injury. J Neurosurg 64:803–807

    Article  PubMed  CAS  Google Scholar 

  36. Kim P, Yaksh TL, Romero SD, Sundt TM (1987) Production of uric acid in cerebrospinal fluid after subarachnoid hemorrhage in dog: investigation of the possible role of xanthine oxidase in chronic vasospasm. Neurosurg 21:39–44

    Article  CAS  Google Scholar 

  37. Ecker A, Reimenschneider PA (1951) Arteriographic demonstration of spasm of the intracranial arteries with special reference to saccular arterial aneurysms. J Neurosurg 8:660–667

    Article  PubMed  CAS  Google Scholar 

  38. Sano K, Asano T, Tanishima T, Sasaki T (1980) Lipid peroxidation as a cause of cerebral vasospasm. Neurol Res 2:253–272

    PubMed  CAS  Google Scholar 

  39. Travis MA, Hall ED (1987) The effects of chronic two-fold dietary vitamin E supplementation on subarachnoid hemorrhage-induced brain hypoperfusion. Brain Res 408:366–370

    Article  Google Scholar 

  40. Stirpe F, Delia Corte E (1969) The regulation of rat liver xanthine oxidase. J Biol Chem 244:3855–3863

    PubMed  CAS  Google Scholar 

  41. Beckman JS, Liu TH, Hogan El, Freeman BA, Hsu CY (1987) Oxygen free radicals and xanthine oxidase in cerebral ischemic injury in the rat. Soc Neurosci (Abstr) 13:1498

    Google Scholar 

  42. Betz AL (1985) Identification of hypoxanthine transport and xanthine oxidase activity in brain capillaries. J Neurochem 44:574–579

    Article  PubMed  CAS  Google Scholar 

  43. Ruzicz FJ, Beinert H, Schilper KL, Dunham WR, Sands RH (1975) Interaction of ubisemiquinone with a paramagnetic component in heart tissue. Proc Natl Acad Sci 72:2886–2891

    Article  Google Scholar 

  44. Turrens JF, Alexandre A, Lehninger A (1985) Ubisemiquinone is the electron donor for Superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys 237:408–414

    Article  PubMed  CAS  Google Scholar 

  45. Patole MS, Swaroop A, Ramasarma T (1986) Generation of H2O2 in brain mitochondria. J Neurochem 47:1–8

    Article  PubMed  CAS  Google Scholar 

  46. Demopoulos HB (1973) The free radical pathology. Fed Proc 32:1859

    PubMed  CAS  Google Scholar 

  47. Boveris A, Cadenas E, Stoppani AOM (1976) Role of ubiquinone in mitochondrial generation of hydrogen peroxide. Biochem J 156:5435–5444

    Google Scholar 

  48. Demopoulos HB, Flamm ES, Pietronigro DD, Seligman ML (1980) The free radical pathology and microcirculation in the major central nervous system disorders. Acta Physiol Scand(suppl) 492:91–119

    CAS  Google Scholar 

  49. McCord JM (1987) Oxygen-derived radicals: a link between reperfusion injury and inflammation. Fed Proc 46:2402–2406

    PubMed  CAS  Google Scholar 

  50. Means ED, Anderson DK (1983) Neuronophagia by leukocytes in experimental spinal cord injury. J Neuropath Exp Neurol 42:707–719

    Article  PubMed  CAS  Google Scholar 

  51. Hallenbeck JM, Dutka AJ, Tanishima T, et al (1986) Polymorphonuclear leukocyte accumulation in brain regions with low blood flow during the early post ischemie period. Stroke 17:246–253

    Article  PubMed  CAS  Google Scholar 

  52. Grome JJ, Gojowczyk G, Hofmann W, Graham DI (1988) Quantitation of photochemically induced focal cerebral ischemia in the rat. J Cerebr Blood Flow Metabol 8:89–95

    Article  CAS  Google Scholar 

  53. Kukreja RC, Kontos HA, Hess MH, Ellis EF (1986) PGH synthase and lipoxygenase generate superoxide in the presence of NADH or NADPH. Circ Res 59:612–619

    PubMed  CAS  Google Scholar 

  54. Misra HP, Fridovich I (1972) The generation of Superoxide radical during the autoxidation of hemoglobin. J Biol Chehem 247:6960–6962

    CAS  Google Scholar 

  55. Lavyne MH, Moskowitz MA, Larin F, Zervas NT, Wurtman RJ (1975) Brain H3-catecholamine metabolism in experimental cerebral ischemia. Neurology 25:483–485

    PubMed  CAS  Google Scholar 

  56. Chakrabarti S, Komar S, Shankar R (1986) Reserpine inhibition of lipid peroxidation and protein phosphorylation in rat brain. Biochem Pharmacol 35:1611–1613

    Article  PubMed  CAS  Google Scholar 

  57. Zaleska MM, Floyd RA (1985) Regional lipid peroxidation in rat brain in vitro: possible role of endogenous iron. Neurochem Res 10:397–410

    Article  PubMed  CAS  Google Scholar 

  58. Koster JF, Slee RG (1986) Ferritin, a physiological iron donor for microsomal lipid peroxidation. FEBS Lett 199:85–88

    Article  PubMed  CAS  Google Scholar 

  59. Sadrzadeh SM, Graf E, Panter SS, Hallaway PE, Eaton JW (1984) Hemoglobin, a biological Fenton reagent. J Biol Chem 259:14354–14356

    PubMed  CAS  Google Scholar 

  60. Gutteridge JMC (1986) Antioxidant properties or proteins ceruloplasmin, albumin and transferrin: a study of their activity in serum and synovial fluid from patients with rheumatoid arthritis. Biochim Biophys Acta 869:119–127

    Article  PubMed  CAS  Google Scholar 

  61. O’Brien PI (1969) Intracellular mechanisms for the decomposition of a lipid peroxide I. Decomposition of a lipid peroxide by metal ions, nerve compounds and nucleophiles. Can J Biochem 47:485–492

    Article  PubMed  Google Scholar 

  62. Siesjö BK (1988) Mechanisms of ischemic brain damage. Crit Care Med 16:954–963

    Article  PubMed  Google Scholar 

  63. Hall ED, Braughler JM (1981) Acute effects of intravenous glucocorticoid pretreatment on the in vitro peroxidation of cat spinal cord tissue. Exp Neurol 73:321–324

    Article  PubMed  CAS  Google Scholar 

  64. Anderson DK, Means ED (1983) Lipid peroxidation in spinal cord: FeCl2 induction and protection with antioxidants. Neurochem Path 1:249–264

    CAS  Google Scholar 

  65. Kurihara M (1985) Role of monamines in experimental spinal cord injury: relationship between Na+ + K+ ATPase and lipid peroxidation. J Neurosurg 62:743–749

    Article  PubMed  CAS  Google Scholar 

  66. Braughler JM, Pregenzer JF, Chase RL, Duncan LA, Jacobsen EI, McCall JM (1987) Novel 21-aminosteroids as potent inhibitors of iron-dependent lipid peroxidation. J Biol Chem 262:10438–10440

    PubMed  CAS  Google Scholar 

  67. Braughler JM, Pregenzer JF (1989) The 21-aminosteroid inhibitors of lipid peroxidation: reactions with lipid peroxyl and phenoxy radicals. J Free Rad Biol Med (in press)

    Google Scholar 

  68. Braughler JM, Chase RL, Neff GL, et al (1988) A new 21-aminosteroid antioxidant lacking glucorticoid activity stimulates ACTH secretion and blocks arachidonic acid release from mouse pituitary tumor (AtT-20) cells. J Pharmacol Exp Ther 244:423–427

    PubMed  CAS  Google Scholar 

  69. Hall ED, Berry KP, Braughler JM (1988) The 21-aminosteroid lipid peroxidation inhibitor U-74,006F protects against cerebral ischemia in gerbils. Stroke 19:997–1002

    Article  PubMed  CAS  Google Scholar 

  70. Natale JE, Schott RJ, Hall ED, Braughler JM, D’Alecy LG (1988) The 21-aminosteroid U-74,006F reduces systemic lipid peroxidation, improves neurological function, and reduces mortality after cardiopulmonary arrest in dogs. Stroke 19:1371–1378

    Article  PubMed  CAS  Google Scholar 

  71. Hall ED, Yonkers PA, McCall JM, Braughler JM (1988) Effects of the 21-aminosteroid U-74,006F on experimental head injury in mice. J Neurosurg 68:456–461

    Article  PubMed  CAS  Google Scholar 

  72. Dimlich RVW, Tornheim PA, Kindel RM, Hall ED, Braughler JM, McCall JM (1989) The effects of a 21-aminosteroid on cerebral metabolites and edema after severe experimental head injury. Adv Neurol (in press)

    Google Scholar 

  73. Hall ED (1988) Effect of the 21-aminosteroid U-74,006F on post-traumatic spinal cord ischemia. J Neurosurg 68:462–465

    Article  PubMed  CAS  Google Scholar 

  74. Hall ED, Yonkers PA, Braughler JM (1988) Attenuation of post-traumatic ischemia by the lipid peroxidation inhibitor U-74,006F: comparison in a contusion vs compression model. Neurosc Abst 14:1154

    Google Scholar 

  75. Anderson DK, Braughler JM, Hall ED, Waters TR McCall JM, Means ED (1988) Doseresponse effects of U-74,006F on neurological recovery in an experimental model of spinal cord injury. J Neurosurg 69:562–567

    Article  PubMed  CAS  Google Scholar 

  76. Heros RC, Zervas NT, Varsos V (1983) Cerebral vasospasm after subarachnoid hemorrhage: an update. Ann Neurol 14:599–608

    Article  PubMed  CAS  Google Scholar 

  77. Hall ED, Travis MA (1989) Effects of the non-glucorticoid 21-aminosteroid U-74,006F on progressive brain hypoperfusion following experimental subarachnoid hemorrhage. Exp Neurol (in press)

    Google Scholar 

  78. Hall ED, Travis MA (1988) Inhibition of arachidonic acid-induced vasogenic brain edema by the non-glucocorticoid 21-aminosteroid U-74,006F. Brain Res 451:350–352

    Article  PubMed  CAS  Google Scholar 

  79. Vollmer DG, Kassell NE, Hongo K, Ogawa H, Tsukahara T (1989) Effect of the nonglucocorticoid 21-aminosteroid U-74,006F in the treatment of experimental cerebral vasospasm. Surg Neurol (in press)

    Google Scholar 

  80. Silvia RC, Piercey MF, Hoffmann WE, Chase RL, Braughler JM, Tang AH (1987) U74,006F, an inhibitor of lipid peroxidation protects against lesion development following experimental stroke in the cat: Histological and metabolic analysis. Neurosci Abst 13:1499

    Google Scholar 

  81. Steinke DE, Weir BKA, Findlay JM, Tanabe T, Grace M, Krushelnychy BD (1989) A trial of the 21-aminosteroid U-74,006F in a primate model of chronic cerebral vasospasm. Neurosurgery (in press)

    Google Scholar 

  82. Young W, Wojak JC, DeCrescito V (1988) Aminosteroid lipid peroxidation inhibitor reduces ionic shifts and edema in the rat middle cerebral artery occlusion model of regional ischemia. Stroke 19:1013–1019

    Article  PubMed  CAS  Google Scholar 

  83. Hall ED, Yonkers PA (1988) Attenuation of post-ischemic cerebral hypoperfusion by the 21-aminosteroid U-74,006F. Stroke 19:340–344

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Means, E.D., Braughler, J.M., Hall, E.D. (1989). The Role of Lipid Peroxidation in Ischemic Central Nervous System Injury. In: Bihari, D., Holaday, J.W. (eds) Brain Failure. Update in Intensive Care and Emergency Medicine, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83929-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83929-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51655-2

  • Online ISBN: 978-3-642-83929-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics