SQUID Concepts and Systems

  • John Clarke
Part of the NATO ASI Series book series (volume 59)


Superconducting QUantum Interference Devices (SQUIDs) are the most sensitive detectors of magnetic flux currently available. They are amazingly versatile, being able to measure any physical quantity that can be converted to a flux, for example, magnetic field, magnetic field gradient, current, voltage, displacement, and magnetic susceptibility. As a result, the applications of SQUIDs are wide ranging, from the detection of tiny magnetic fields produced by the human brain and the measurement of fluctuating geomagnetic fields in remote areas to the detection of gravity waves and the observation of spin noise in an ensemble of magnetic nuclei.


Josephson Junction YBCO Film Input Circuit Noise Energy Spiral Coil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    London F.: Superfluids. Wiley, New York 1950.MATHGoogle Scholar
  2. 2.
    Josephson. B.D.: Possible new effects in superconductive tunneling. Phys. Lett. 1. 251–253 (1962)CrossRefMATHGoogle Scholar
  3. Josephson. B.D.: Supercurrents through barriers. Adv. Phys. 14. 419–451 (1965)CrossRefGoogle Scholar
  4. 3.
    Jaklevic. R.C., Lambe. J., Silver. A.H., and Mercereau. J.E.: Quantum interference effects in Josephson tunneling. Phys. Rev Lett. 12. 159–160 (1964)CrossRefGoogle Scholar
  5. 4.
    Zimmerman. J.E., Thiene. P., Harding. J.T.: Design and operation of stable rf-biased superconducting point-contact quantum devices, and a note on the properties of perfectly clean metal contacts. J. Appl. Phys. 41. 1572–1580 (1970).CrossRefGoogle Scholar
  6. 5.
    Mercereau, J.E.: Superconducting magnetometers. Rev. Phys. Appl. 5. 13–20 (1970)CrossRefGoogle Scholar
  7. Nisenoff. M.: Superconducting magnetometers with sensitivities approaching 10−10 gauss. Rev. Phys. Appl. 5. 21–24 (1970).CrossRefGoogle Scholar
  8. 6.
    Stewart. W.C.: Current-voltage characteristics of Josephson junctions. Appl. Phys. Lett. 12. 277–280 (1968).CrossRefGoogle Scholar
  9. 7.
    McCumber D.E.: Effect of ac impedance on dc voltage-current characteristics of Josephson junctions. J. Appl. Phys. 39. 3113–3118 (1968).CrossRefGoogle Scholar
  10. 8.
    Ambegaokar. V. and Halperin. B. L: Voltage due to thermal noise in the dc Josephson effect. Phys. Rev. Lett. 22. 1364–1366 (1969).CrossRefGoogle Scholar
  11. 9.
    Clarke. J. and Koch. R. H.: The impact of high-temperature superconductivity on SQUIDs. Science 242. 217–223(1988).CrossRefGoogle Scholar
  12. 10.
    Likharev. K. K. and Semenov. V. K.: Fluctuation spectrum in superconducting point junctions. Pis’ma Zh. Eksp. Teor. Fiz. 15. 625–629 (1972).Google Scholar
  13. Likharev. K. K. and Semenov. V. K.: Fluctuation spectrum in superconducting point junctions. [JETP Lett. 15. 442–445 (1972)].Google Scholar
  14. 11.
    Vystavkin. A. N., Gubankov. V.N., Kuzmin. L.S., Likharev. K.K., Migulin. V.V. and Semenov. V.K.: S-c-s junctions as nonlinear elements of microwave receiving devices. Phys. Rev. Appl. 9. 79–109 (1974).CrossRefGoogle Scholar
  15. 12.
    Koch. R.H., Van Harlingen. DJ. and Clarke. J.: Quantum noise theory for the resistively shunted Josephson junction. Phys. Rev Lett. 45. 2132–2135 (1980).CrossRefGoogle Scholar
  16. 13.
    Tesche. C.D. and Clarke. J.: dc SQUID: Noise and Optimization. J. Low. Temp. Phys. 27. 301–331 (1977).CrossRefGoogle Scholar
  17. 14.
    Bruines. J.J.P., de Waal. V.J. and Mooij. J.E.: Comment on “dc SQUID noise and optimization” by Tesche and Clarke. J. Low. Temp. Phys. 46. 383–386 (1982).Google Scholar
  18. 15.
    De Waal. V.J., Schrijner. P. and Llurba. R. Simulation and optimization of a dc SQUID with finite capacitance. J. Low. Temp. Phys. 54. 215–232.Google Scholar
  19. 16.
    Ketchen. M.B. and Jaycox. J.M.: Ultra-low noise tunnel junction dc SQUID with a tightly coupled planar input coil. Appl. Phys. Lett. 40. 736–738 (1982).CrossRefGoogle Scholar
  20. 17.
    Jaycox J.M. and Ketchen M.B.: Planar coupling scheme for ultra low noise dc SQUIDs. IEEE Trans. Magn., MAG-17. 400–403 (1981).CrossRefGoogle Scholar
  21. 18.
    Wellstood. F.C., Heiden. C. and Clarke. J.: Integrated dc SQUID magnetometer with high slew rate. Rev. Sci. Inst. 55. 952–957 (1984).CrossRefGoogle Scholar
  22. 19.
    Gurvitch. M., Washington. M.A. and Huggins. H.A.: High quality refactory Josephson tunnel junction utilizing thin aluminum layers. Appl Phys. Lett. 42. 472–474 (1983).CrossRefGoogle Scholar
  23. 20.
    De Waal. V.J., Klapwijk. T:M. and Van den Hamer. P.: High performance dc SQUIDs with submicrometer niobium Josephson junctions. J. Low. Temp. Phys. 53. 287–312 (1983).CrossRefGoogle Scholar
  24. 21.
    Tesche. C.D., Brown. K.H., Callegari. A.C., Chen. M.M., Greiner. J.H Jones. H.C., Ketchen. M.B., Kim. K.K., Kleinsasser. A.W., Notarys. H.A., Proto. G., Wang. R.H. and Yogi. T.: Practical dc SQUIDs with extremely low l/f noise. IEEE Trans. Magn. MAG-21. 1032–1035 (1985).CrossRefGoogle Scholar
  25. 22.
    Pegrum. C.M., Hutson. D., Donaldson. G.B. and Tugwell. A.: DC SQUIDs with planar input coils. IEEE Trans. Magn. MAG-21. 1036–1039 (1985).CrossRefGoogle Scholar
  26. 23.
    Noguchi. T., Ohkawa. N. and Hamanaka. K.: Tunnel junction dc SQUID with a planar input coil. SQUID 85 Superconducting Quantum Interference Devices and their Applications. Ed. Hahlbohm. H D and Lubbig. H. (Walter de Gruyter, Berlin, 1985) 761–766.Google Scholar
  27. 24.
    Muhlfelder. B., Beall. J.A., Cromar. M.W. and Ono. R.H.: Very low noise tightly coupled dc SQUID amplifiers. Appl. Phys. Lett. 49. 1118–1120 (1986).CrossRefGoogle Scholar
  28. 25.
    Knuutila. J., Kajola. N., Seppä. H., Mutikainen. R. and Salmi. J.: Design optimization and construction of a dc SQUID with complete flux transformer circuits. J. Low. Temp. Phys. 71. 369–392 (1988).CrossRefGoogle Scholar
  29. 26.
    Carelli. P. and Foglietti. V.: Behavior of a multiloop dc superconducting quantum interference device. J. Appl. Phys. 53. 7592–7598 (1982).CrossRefGoogle Scholar
  30. 27.
    Clarke. J., Goubau. W.M. and Ketchen. M.B.: J. Low Temp Phvs 25. 99–144 (1976).CrossRefGoogle Scholar
  31. 28.
    Ketchen. M.B., Goubau. W.M., Clarke. J. and Donaldson. G.B.: Superconducting thin-film gradiometer. J. Appl. Phys. 44. 4111–4116 (1978).CrossRefGoogle Scholar
  32. 29.
    Wellstood. F.C., and Clarke. J.: unpublished.Google Scholar
  33. 30.
    Wellstood. F.C., Urbina. C. and Clarke. J.: Low-frequency noise in dc superconducting quantum interference devices below 1K. Appl. Phys. Lett. 50. 772–774 (1987).CrossRefGoogle Scholar
  34. 31.
    Roukes. M. L., Freeman. M. R., Germain. R. S., Richardson. R. C. and Ketchen. M. B.: Hot electrons and energy transport in metals at millikelvin temperatures. Phys. Rev. Lett. 55. 422–425 (1985).CrossRefGoogle Scholar
  35. 32.
    Wellstood. F.C., Urbina. C. and Clarke. J.: Hot electron effect in the dc SQUID. IEEE Trans. Magn. MAG-25. 1001–1004 (1989); Appl. Phys. Lett. (to be published).CrossRefGoogle Scholar
  36. 33.
    Ketchen. M.B., Awschalom. D.D., Gallagher. W.J., Kleinsasser. A.W., Sandstrom. R.L., Rozen. J.R. and Bumble. B.: Design, fabrication and performance of integrated miniature SQUID susceptometers. IEEE Trans. Magn. MAG-25. 1212–1215 (1989).CrossRefGoogle Scholar
  37. 34.
    Koch. R.H., Clarke. J., Goubau. W.M., Martinis. J.M., Pegrum. C.M. and Van Harlingen. D.J.: Flicker (l/f) noise in tunnel junction dc SQUIDs. J. Low. Temp. Phys. 51. 207–224 (1983).CrossRefGoogle Scholar
  38. 35.
    Rogers. C.T. and Buhrman. R.A.: Composition of l/f noise in metal-insulator-metal tunnel junctions. Phys. Rev. Lett. 53. 1272–1275 (1984).CrossRefGoogle Scholar
  39. 36.
    Dutta. P. and Horn. P.M.: Low-frequency fluctuations in solids: l/f noise. Rev. Mod. Phys. 53. 497–516 (1981).CrossRefGoogle Scholar
  40. 37.
    Savo. B., Wellstood. F.C. and Clarke. J.: Low-frequency excess noise in Nb-Al2O3-Nb Josephson tunnel junction. Appl. Phys. Lett. 50. 1757–1759 (1987).CrossRefGoogle Scholar
  41. 38.
    Tesche. C.D., Brown. R. H., Callegari. A. C., Chen. M. M., Greiner. J. H., Jones. H. C., Ketchen. M. B., Kim. K. K., Kleinsasser. A. W., Notarys. H. A., Proto. G., Wang. R. H. and Yogi. T.: Well-coupled dc SQUID with extremely low l/f noise. Proc. 17th International Conference on low temperature physics LT-17. (North Holland, Amsterdam 1984) 263–264.Google Scholar
  42. 39.
    Foglietti. V, Gallagher. W. J., Ketchen. M. B., Kleinsasser. A. W., Koch. R. H., Raider. S. I. and Sandstrom. R. L.: Low-frequency noise in low l/f noise dc SQUIDs. Appl. Phys. Lett. 49. 1393–1395 (1986).CrossRefGoogle Scholar
  43. 40.
    Biomagnetic Technologies Inc. 4174 Sorrento Valley Blvd., San Diego, CA 92121.Google Scholar
  44. 41.
    Fujimaki. N., Tamura. H., Imamura. T. and Hasuo. S.: A single-chip SQUID magnetometer. Digest of Tech. papers of 1988 International Solid-state conference. (ISSCC) San Francisco. pp. 40–41. A longer version with the same title is to be published.Google Scholar
  45. 42.
    Drung. D.: Digital Feedback loops for dc SQUIDs. Cryogenics 26. 623–627 (1986).CrossRefGoogle Scholar
  46. Drung. D., Crocoll. E., Herwig. R., Neuhaus. M. and Jutzi. W.: Measured performance parameters of gradiometers with digital output. IEEE Trans. Magn. MAG-25. 1034–1037 (1989).CrossRefGoogle Scholar
  47. 43.
    Mück. M. and Heiden. C.: Simple dc SQUID system based on a frequency modulated relaxation oscillator. IEEE Trans. Magn. MAG-25. 1151–1153 (1989).CrossRefGoogle Scholar
  48. 44.
    Clarke. J.: Superconducting QUantum Interference Devices for Low Frequency Measurements. Superconductor Applications: SQUIDs and Machines, Ed. Schwartz. B. B. and Foner. S. (Plenum New York 1977). pp 67–124.Google Scholar
  49. 45.
    Giffard. R. P., Webb. R.A. and Wheatley. J.C.: Principles and methods of low-frequency electric and magnetic measurements using rf-biased point-contact superconducting device. J. Low. Temp. Phys. 6. 533–610 (1972).CrossRefGoogle Scholar
  50. 46.
    Kurkijärvi. J.: Intrinsic fluctuations in a superconducting ring closed with a Josephson junction. Phys. Rev. B 6. 832–835 (1972).CrossRefGoogle Scholar
  51. 47.
    Kurkijärvi. J. and Webb. W.W.: Thermal noise in a superconducting flux detector. Proc. Applied Superconductivity Conf. (Annapolis, MD.) 581–587 (1972).Google Scholar
  52. 48.
    Jackel. L.D. and Buhrman. R.A.: Noise in the rf SQUID. J. Low. Temp. Phys. 19. 201–246 (1975).CrossRefGoogle Scholar
  53. 49.
    Ehnholm. G.J.: Complete linear equivalent circuit for the SQUID. SQUID Superconducting Quantum Interference Devices and their Applications. Ed. Hahlbohm. H.D. and Lubbig. H. (Walter de Gruyter, Berlin, 1977) 485–499Google Scholar
  54. Ehnholm. G.J.: Theory of the signal transfer and noise properties of the rf SQUID. J. Low. Temp. Phys. 29. 1–27 (1977).CrossRefGoogle Scholar
  55. 50.
    Hollenhorst. H.N. and Giffard. R.P.: Input noise in the hysteretic rf SQUID: theory and experiment. J. Appl. Phys. 51. 1719–1725 (1980).CrossRefGoogle Scholar
  56. 51.
    Kurkijärvi. J.: Noise in the superconducting flux detector. J. Appl. Phys. 44. 3729–3733 (1973).CrossRefGoogle Scholar
  57. 52.
    Giffard. R.P., Gallop. J.C. and Petley. B.N.: Applications of the Josephson effects. Prog. Quant. Electron 4. 301–402 (1976).CrossRefGoogle Scholar
  58. 53.
    Ehnholm. G.J., Islander. S.T., Ostman. P. and Rantala. B.: Measurements of SQUID equivalent circuit parameters. J. de Physique 39. colloque C6. 1206–1207 (1978).Google Scholar
  59. 54.
    Giffard. R.P. and Hollenhorst. J.N.: Measurement of forward and reverse signal transfer coefficients for an rf-biased SQUID. Appl. Phys. Lett. 32. 767–769 (1978).CrossRefGoogle Scholar
  60. 55.
    Jackel. L. D., Webb. W. W., Lukens. J. E. and Pei. S. S.: Measurement of the probability distribution of thermally excited fluxoid quantum transitions in a superconducting ring closed by a Josephson junction. Phys. Rev. B9. 115–118 (1974).Google Scholar
  61. 56.
    Long. A., Clark. T. D., Prance. R. J. and Richards. M. G.: High performance UHF SQUID magnetometer. Rev. Sci. Instrum. 50. 1376–1381 (1979).CrossRefGoogle Scholar
  62. 57.
    Hollenhorst. J. N. and Giffard. R. P.: High sensitivity microwave SQUID. IEEE Trans. Magn. MAG-15. 474–477 (1979).CrossRefGoogle Scholar
  63. 58.
    Ahola. H., Ehnholm. G. H., Rantala. B. and Ostman. P.: Cryogenic GaAs-FET amplifiers for SQUIDs. J. de Physique 39. colloque C6. 1184–1185 (1978)Google Scholar
  64. Ahola. H., Ehnholm. G. H., Rantala. B. and Ostman. P.: Cryogenic GaAs-FET amplifiers for SQUIDs J. Low Temp. Phys. 35. 313–328 (1979).CrossRefGoogle Scholar
  65. 59.
    For a review, see Clarke. J.: Advances in SQUID Magnetometers. IEEE Trans. Election Devices. ED-27. 1896–1908 (1980).CrossRefGoogle Scholar
  66. 60.
    Zimmerman. J. E.: Sensitivity enhancement of Superconducting Quantum Interference Devices through the use of fractional-turn loops. J. Appl. Phys. 42. 4483–4487 (1971).CrossRefGoogle Scholar
  67. 61.
    Shoenberg. D.: Superconductivity (Cambridge University Press 1962) 30.Google Scholar
  68. 62.
    For a review, see Clarke. J.: Geophysical Applications of SQUIDs. IEEE Trans. Magn. MAG-19. 288–294 (1983).CrossRefGoogle Scholar
  69. 63.
    De Waal. V. J. and Klapwijk. T. M.: Compact Integrated dc SQUID gradiometer. Appl. Phys. Lett. 41. 669–671 (1982).CrossRefGoogle Scholar
  70. 64.
    Van Nieuwenhuyzen G. J. and de Waal. V. J.: Second order gradiometer and dc SQUID integrated on a planar substrate. Appl. Phy. Lett. 46. 439–441 (1985).CrossRefGoogle Scholar
  71. 65.
    Carelli. P. and Foglietti. V.: A second derivative gradiometer integrated with a dc superconducting interferometer. J. Appl. Phys. 54. 6065–6067 (1983).CrossRefGoogle Scholar
  72. 66.
    Koyangi. M., Kasai. N., Chinore. K., Nakanishi. M. and Kosaka. S.: An integrated dc SQUID gradiometer for biomagnetic application. IEEE Trans. Magn. MAG-25. 1166–1169 (1989).CrossRefGoogle Scholar
  73. 67.
    Knuutila. J., Kajola. M., Mutikainen. R., Salmi. J.: Integrated planar dc SQUID magnetometers for multichannel neuromagnetic measurements. Proc. ISEC’ 87 p. 261.Google Scholar
  74. 68.
    For reviews, see Romani. G. L., Williamson. S. J. and Kaufman. L.: Biomagnetic instrumentation. Rev. Sci. Instrum. 53. 1815–1845 (1982)CrossRefGoogle Scholar
  75. Buchanan. D. S., Paulson. D. and Williamson. S. J.: Instrumentation for clinical applications of neuromagnetism. Adv. Cryo. Eng. (to be published).Google Scholar
  76. 69.
    Knuutila. J.: European Physical Society Workshop “SQUID: State of Art, Perspectives and Applications”. Rome, Italy June 22–24, 1988 (unpublished).Google Scholar
  77. 70.
    Barth. D. S., Sutherling. W., Engel. J. Jr. and Beatty J.: Neuromagnetic evidence of spatially distributed sources underlying epileptiform spikes in the human brain. Science 223. 293–296 (1984).CrossRefGoogle Scholar
  78. 71.
    Romani. G. L., Williamson. S. J. and Kaufman. L.: Tonotopic organization of the human auditory cortex. Science 216. 1339–1340 (1982).CrossRefGoogle Scholar
  79. 72.
    Cabrera. B.: First results from a superconductive detector for moving magnetic monopoles. Phys. Rev. Lett. 48. 1378–1381 (1982).CrossRefGoogle Scholar
  80. 73.
    Quantum Design, 11568 Sorrento Valley Road, San Diego, CA 92121.Google Scholar
  81. 74.
    Ketchen. M. B., Kopley. T. and Ling. H.: Minature SQUID susceptometer. Appl Phys. Lett. 44.1008–1010 (1984).CrossRefGoogle Scholar
  82. 75.
    Awschalom. D. D. and Warnock. J.: Picosecond magnetic spectroscopy with integrated dc SQUIDs. IEEE Trans. Magn. MAG-25. 1186–1192 (1989).CrossRefGoogle Scholar
  83. 76.
    Clarke. J.: A superconducting galvanometer employing Josephson tunneling. Phil. Mag. 13. 115–127 (1966).CrossRefGoogle Scholar
  84. 77.
    Hilbert. C. and Clarke. J.: DC SQUIDs as radiofrequency amplifiers. J. Low Temp. Phys. 61. 263–280 (1985).CrossRefGoogle Scholar
  85. 78.
    Tesche. C. D. and Clarke. J.: DC SQUID: current noise. J. Low Temp. Phys. 37. 397–403 (1979).CrossRefGoogle Scholar
  86. 79.
    Hilbert. C. and Clarke. J.: Measurements of the dynamic input impedance of a dc SQUID. J. Low Temp. Phys. 61. 237–262 (1985).CrossRefGoogle Scholar
  87. 80.
    Martinis. J. M. and Clarke. J.: Signal and noise theory for the dc SQUID. J. Low Temp. Phys. 61. 227–236 (1985), and references therein.CrossRefGoogle Scholar
  88. 81.
    Koch. R.H., Van Harlingen. D. J. and Clarke. J.: Quantum noise theory for the dc SQUID. Appl. Phys. Lett. 38. 380–382 (1981).CrossRefGoogle Scholar
  89. 82.
    Danilov. V. V., Likharev. K. K. and Zorin. A. B.: Quantum noise in SQUIDs. IEEE Trans. Magn. MAG-19. 572–575 (1983).CrossRefGoogle Scholar
  90. 83.
    Hilbert. C., Clarke. J., Sleator. T. and Hahn. E. L.: Nuclear quadruple resonance detected at 30MHz with a dc superconducting quantum interference device. Appl. Phys. Lett. 47. 637–639 (1985). (See references therein for earlier work on NMR with SQUIDS).CrossRefGoogle Scholar
  91. 84.
    Fan. N. Q., Heaney. M.B., Clarke. J., Newitt. D., Wald. L. L., Hahn. E. L., Bielecke. A. and Pines. A.: Nuclear magnetic resonance with dc SQUID preamplifiers. IEEE Trans. Magn. MAG-25. 1193–1199 (1989).CrossRefGoogle Scholar
  92. 85.
    Sleator. T., Hahn. E. L., Heaney, M.B., Hilbert. C. and Clarke. J.: Nuclear electric quadrupole induction of atomic polarization. Phys. Rev. Lett. 57. 2756–2759 (1986).CrossRefGoogle Scholar
  93. 86.
    Sleator. T., Hahn. E. L., Hilbert, C. and Clarke. J.: Nuclear-spin noise and spontaneous emission. Phys. Rev. B. 36. 1969–1980 (1987).CrossRefGoogle Scholar
  94. 87.
    For an elementary review on gravity waves, see Shapiro. S. L., Stark. R.F. and Teukolsky. S. J.: The search for gravitational waves. Am. Sci. 73. 248–257 (1985).Google Scholar
  95. 88.
    For a review on gravity-wave antennae, see Michelson. P. F., Price. J. C. and Taber. R. C: Resonant-mass detectors of gravitational radiation. Science 237.150–157 (1987).Google Scholar
  96. 89.
    Paik. H. J.: Superconducting tensor gravity gradiometer with SQUID readout. SQUID Applications to Geophysics. Ed. Weinstock H. and Overton. W. C., Jr. (Soc. of Exploration Geophysicists, Tulsa, Oklahoma, 1981) 3–12.Google Scholar
  97. 90.
    Mapoles. E.: A superconducting gravity gradiometer. SQUID Applications to Geophysics. Ed. Weinstock H. and Overton. W. C., Jr. (Soc. of Exploration Geophysicists, Tulsa, Oklahoma, 1981). 153–157.Google Scholar
  98. 91.
    Bednorz. J. G. and Muller. K. A.: Possible high Tc superconductivity in the Ba-La-Cu-O system. Z. Phys. B64. 189–193 (1986).CrossRefGoogle Scholar
  99. 92.
    Koch. R. H., Umbach. C. P., Clark. G. J., Chaudhari. P. and Laibowitz. R. B.: Quantum interference devices made from superconducting oxide thin films. Appl. Phys. Lett. 51. 200–202 (1987).CrossRefGoogle Scholar
  100. 93.
    Zimmerman. J. E., Beall. J. A., Cromar. M. W. and Ono. R. H.: Operation of a Y-Ba-Cu-O rf SQUID at 81K. Appl. Phys. Lett. 51. 617–618 (1987).CrossRefGoogle Scholar
  101. 94.
    Ferrari. M. J., Johnson. M., Wellstood. F. C., Clarke. J., Rosenthal. P. A., Hammond. R. H. and Beasley. M. R.: Magnetic flux noise in thin film rings of YBa2Cu307-δ;. Appl. Phys. Lett. 53. 695–697 (1988).CrossRefGoogle Scholar
  102. 95.
    Shiota. T., Takechi. K., Takai. Y and Hayakawa. H.: An observation of quasiparticle tunneling characteristics in all Y-Ba-Cu-0 thin film tunnel junctions (unpublished).Google Scholar
  103. 96.
    Mankiewich. P. M., Schwartz. D. B., Howard. R. E., Jackel. L. D., Straughn. B. L., Burkhardt. E. G. and Dayem. A. H.: Fabrication and characterization of an YBa2Cu307/Au/YBa2Cu307 S-N-S microbridge. Fifth International Workshop on Future Electron Devices — High Temperature Superconducting Devices. June 2–4, 1988, Miyaki-Zao, Japan. 157–160.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • John Clarke
    • 1
    • 2
  1. 1.Department of PhysicsUniversity of CaliforniaUSA
  2. 2.Materials and Chemical Sciences DivisionLawrence Berkeley LaboratoryBerkeleyUSA

Personalised recommendations