Principles of Direct and Heterodyne Detection with SIS Junctions

  • K. H. Gundlach
Conference paper
Part of the NATO ASI Series book series (volume 59)


Radio astronomy has stimulated the development of low-noise receivers for millimetre and sub-millimetre electromagnetic radiation. A branch of radio astronomy is devoted to the study of continuum radiation and requires low-noise detectors of large instantaneous bandwidth, ideally of the order of 100 GHz. Continuum observations include the 3 K cosmic background radiation, thermal radiation from dust in interstellar clouds, synchrotron radiation and free-free emission from ionized regions.


Shot Noise Intermediate Frequency Local Oscillator Noise Temperature Noise Equivalent Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barber, M.R. (1967), “Noise figure and conversion loss of the Schottky barrier mixer diode”, IEEE Transactions on Microwave Theory and Techniques, MTT-15, 629.CrossRefGoogle Scholar
  2. Blum, E.J. (1986), “A cryostat for radio astronomy receivers using superconducting mixers at millimetre wavelengths”, Advances in Cryogenic Engineering, 31, 551.CrossRefGoogle Scholar
  3. Blundell, R., Gundlach, K.H., Blum, E.J. (1983), “Practical low-noise quasiparticle receiver for 80–100 GHz”, Electronics Lett., 19, 498.CrossRefGoogle Scholar
  4. Blundell, R., and Gundlach, K.H. (1985), “SIS junction response from the millimetre into the submillimetre wave region”, SPIE Vol. 598 Instrumentation for Submillimeter Spectroscopy, pp. 16.Google Scholar
  5. Blundell, R. and Gundlach, K.H. (1987), “A quasiparticle SIN mixer for the 230 GHz frequency range”, Int. J. of Infrared and Millimeter Waves, 8, 1573.CrossRefGoogle Scholar
  6. Blundell, R., Carter, M., Gundlach, K.H. (1988), “A low-noise SIS receiver covering the frequency range 215–250 GHz”, Int. J. of Infrared and Millimeter Waves, 8, 361.CrossRefGoogle Scholar
  7. Büttgenbach, T.H., Miller, R.E., Wengler, M.J., Watson, D.G., Phillips, T.G. (1988), “A broadband low noise SIS receiver for submillimeter astronomy”, to be published.Google Scholar
  8. Caves, C.M. (1982), “Quantum limit of noise in linear amplifiers”, Phys. Rev., D26, 1817.Google Scholar
  9. Dayem, A.H. and Martin, R.J. (1962), “Quantum interaction of microwave radiation with tunneling between superconductors”, Phys. Rev. Lett., 8, 246.CrossRefGoogle Scholar
  10. Devyatov, I.A., Kuzmin, L.S., Likharev, K.K., Migulin, V.V., Zorin, A.B. (1986), “Quantum — statistical theory of microwave detection using superconducting tunnel junctions”, J. Appl. Phys., 60, 1808.CrossRefGoogle Scholar
  11. Downes, D. (1983), “H2O masers in star-forming regions”, in Birth and Infancy of Stars, edited by R. Lucas, A. Omont and R. Stora, North-Holland, Amsterdam, pp. 557.Google Scholar
  12. Face, D.W., Prober, D.E., McGrath, W.R., Richards, P.L. (1986), “High quality tantalum superconducting tunnel junctions for microwave mixing in the quantum limit”, Appl. Phys. Lett., 48, 1098.CrossRefGoogle Scholar
  13. Feldman, M.J. and Rudner, S. (1983), “Mixing with SIS arrays”, in Reviews of Infrared and Millimeter Waves, edited by K.J. Button (Plenum Publishing Corporation), Vol. 1, pp. 47.Google Scholar
  14. Feldman, M.J. (1987), “Quantum noise in the quantum theory of mixing”, IEEE Transactions on Magnetics, MAG-23, 1054.CrossRefGoogle Scholar
  15. Feldman, M.J. (1987a), “Saturation of the SIS mixer”, Extended Abstracts of the International Superconductivity Electronics Conference (ISEC’ 87), August 28–29, Tokyo, Japan, pp. 290.Google Scholar
  16. Feldman, M.J. (1988), “Theoretical considerations for THz SIS mixers”, Int. J. of Infrared and Millimeter Waves, 8, 1287.CrossRefGoogle Scholar
  17. Giaever, I. (1960), “Energy gap in superconductors measured by electron tunneling”, Phys. Rev. Lett., 5, 147.CrossRefGoogle Scholar
  18. Guélin, M. (1988), “Organic and exotic molecules in space”, in Molecules in Physics, Chemistry and Biology, edited by D. Reidel, in press.Google Scholar
  19. Guélin, M., Cernicharo, J., Penalver, J. (1988), unpublished data.Google Scholar
  20. Gundlach, K.H., Hartfuss, H.J., Takada, S. (1981), “Photon-assisted tunneling and frequency mixing in SIS junctions”, Max-Planck-Institut für Physik und Astrophysik, Institut für Astrophysik, International Report MPA 21.Google Scholar
  21. Gundlach, K.H., Takada, S., Zahn, M., Hartfuss, H.J. (1982), “A new lead alloy tunnel junction for quasiparticle mixing and other application”, Appl. Phys. Lett., 41, 294.CrossRefGoogle Scholar
  22. Gundlach, K.H., Blundell, R., Blum, E.J. (1985), “Eine Neuentwicklung für die Radioastronomie: der SIS-Empfänger”, Mikrowellen Magazin, 11, 32.Google Scholar
  23. Hartfuss, H.J., Gundlach, K.H., Kadlec, J. (1980), “Video detection of mm-wave radiation using SIS Josephson junction”, SQUID’ 80, Walter de Gruyter and Co., Berlin — New York, pp. 841.Google Scholar
  24. Hartfuss, H.J. and Gundlach, K.H. (1980), “MM-wave detection using quasiparticle tunneling”, SQUID’ 80, Walter de Gruyter and Co., Berlin — New York, p. 851.Google Scholar
  25. Hartfuss, H J. and Gundlach, K.H. (1981), “Video detection of mm-waves via photon-assisted tunneling between two superconductors”, Int. J. of Infrared and Millimeter Waves, 2, 809.CrossRefGoogle Scholar
  26. Hartfuss, H.J. and Tutter, M. (1983), “Numerical design calculation of mm-wave mixer with SIS tunnel junction”, Int. J. of Infrared and Millimeter Waves, 4, 993.CrossRefGoogle Scholar
  27. Hartfuss, H.J. and Tutter, M. (1984), “Minimum noise temperature of a practical SIS quantum mixer”, Int. J. of Infrared and Millimeter Waves, 5, 717.CrossRefGoogle Scholar
  28. Hilberath, W., Vowinkel, B., Gundlach, K.H. (1985), “145-GHz front end with SIS mixer”, SPIE Vol. 598, Instrumentation for Submillimeter Spectroscopy, pp. 20.Google Scholar
  29. Ibrügger, J., Okuyama, K., Blundell, R., Gundlach, K.H., Blum, E.J. (1984), “Quasiparticle 150-GHz mixer”, Proceedings of the 17th International Conference on Low Temperature Physics, edited by U. Eckern, A. Schmid, W. Weber, and H. Wühl (North-Holland, Amsterdam), pp. 937.Google Scholar
  30. Ibrügger, J. (1987), unpublished result.Google Scholar
  31. Imamura, T., Hoko, H., Hasno, S. (1987), “Integration process for Josephson LSI based on Nb-Aloxide-Nb junctions”, Extended Abstracts of the International Superconductivity Conference (ISEC’ 87), August 28–29, Tokyo, Japan, pp. 57.Google Scholar
  32. Inatani, J., Sakamoto, A., Tsuboi, M. (1987), “Nb-Aloxide-Nb junctions for mm-wave mixers”, Extended Abstracts of the International Superconductivity Conference, August 28–29, Tokyo, Japan, pp. 103.Google Scholar
  33. Kerr, A.R., Pan, S.K., Feldman, M.J., Davidson, A. (1981), “Infinite available gain in a 115-GHz SIS mixer”, Physica, 108 B, 1369.Google Scholar
  34. Kreysa, E. (1984), “Bolometer systems developed at the MPIfR”, Int. Symp. on Millimeter and Submillimeter Wave Radio Astronomy U.R.S.I., Granada, Spain, pp. 153.Google Scholar
  35. Kreysa, E. (1987), private communication.Google Scholar
  36. Leuchs, G. (1986), “Photon statistics, antibunching and squeezed states in non-equilibrium quantum statistical physics”, Frontiers of Non-Equilibrium Physics, edited by G.T. Moore and M.O. Scully, Plenum Press, New York, London, pp. 329.Google Scholar
  37. Likharev, K.K. and Zorin, A.B. (1984), “Quantum limitation of superconducting mixers”, Proceedings of the 17th International Conference on Low Temperature Physics, edited by U. Eckern, A. Schmid, W. Weber and H. Wühl (North Holland, Amsterdam), pp. 1153.Google Scholar
  38. Lukens, J.E., Jain, A.K., Wan, K.L. (1988), “Application of Josephson effect arrays for submm sources”, this volume.Google Scholar
  39. McGrath, W.R., Richards, P.L., Smith, A.D., van Kempen, H., Batchelor, R.A., Prober, D.E., Santhanan, P. (1981), “Large gain, negative resistance, and oscillations in superconducting quasiparticle heterodyne mixers”, Appl. Phys. Lett., 39, 655.CrossRefGoogle Scholar
  40. Monaco, R., Pagano, S., Costabile, G. (1988), “Superradiant emission from an array of long Josephson junctions”, to appear in Phys. Lett. A.Google Scholar
  41. Morohashi, Skinoki, S.F., Shoji, A., Aoyagi, M., Hayakawa, H. (1985), “High quality Nb/Al-Aloxide-Nb Josephson junction”, Appl. Phys. Lett., 46, 1179.CrossRefGoogle Scholar
  42. Pan, S.-K., Feldman, M.J., Kerr, A.R., Timbie, P. (1983), “A low-noise 115-GHz receiver using superconducting tunnel junctions”, Appl. Phys. Lett., 43, 786.CrossRefGoogle Scholar
  43. Pedersen, N.F. (1986), “Long Josephson junctions”, in Josephson Effect — Achievements and Trends, edited by A. Barone (World Scientific, Singapore).Google Scholar
  44. Phillips, T.G. and Woody, D.P. (1982), “Millimeter and submillimeter wave receivers”, Ann. Rev. Astron. Astrophysics, 20, 285.CrossRefGoogle Scholar
  45. Richards, P.L. and Shen, T.M. (1980), “Superconductive devices for millimeter wave detection, mixing and amplification”, IEEE Trans. Electron. Devices, ED-27, 1909.CrossRefGoogle Scholar
  46. Richards, P.L., Shen, T.M., Harris, R.E., Lloyd, F.L. (1980), “Superconductor-insulator-superconductor quasiparticle junctions as microwave photon detectors”, Appl. Phys. Lett., 36, 4802.CrossRefGoogle Scholar
  47. Räisänen, A.V., Crété, D.G., Richards, P.L., Lloyd, F.L. (1986), “Wide band low noise mm-wave SIS mixers with a single tuning element”, Int. J. of Infrared and Millimeter Waves, 7, 1835.CrossRefGoogle Scholar
  48. Shen, T.M., Richards, P.L., Harris, R.E., Lloyd, F.L. (1980), “Conversion gain in mm-wave quasiparticle heterodyne mixers”, Appl. Phys. Lett., 36, 777.CrossRefGoogle Scholar
  49. Shen, T.M. (1981), “Conversion gain in millimeter wave quasiparticle heterodyne mixers”, IEEE J., Quantum Electron., QE-17, 1151.CrossRefGoogle Scholar
  50. Shoji, A., Aoyagi, M., Kosaka, S., Shinoki, F. (1987), “NbN-MgO-NbN Josephson tunnel junctions”, Superconductivity Electronics, edited by K.O. Hara, Ohmsha, Kanda, Tokyo 101, pp. 182.Google Scholar
  51. Tien, P.K. and Gordon, J.P. (1963), “Multiphoton process observed in the interaction of microwave fields with the tunneling between superconductor films”, Phys. Rev., 129, 647.CrossRefGoogle Scholar
  52. Tucker, J. (1979), “Quantum limited detection in tunnel junctin mixers”, IEEE J., Quantum Electron., QE-15, 1234.CrossRefGoogle Scholar
  53. Tucker, J. (1980), “Predicted conversion gain in superconductor-insulator-superconductor: quasiparticle mixers”, Appl. Phys. Lett., 36, 477.CrossRefGoogle Scholar
  54. Tucker, J. and Feldman, M.J. (1985), “Quantum detection at millimeter wavelengths”, Rev. Mod. Phys., 57, 1055.CrossRefGoogle Scholar
  55. Wengler, M.J., Woody, D.P., Miller, R.E., Phillips, T.G. (1985), “A low-noise receiver for millimeter and submillimeter wavelengths”, Int. J. of Infrared and Millimeter Waves, 6, 697.CrossRefGoogle Scholar
  56. Winkler, D. (1987), “Properties of quasiparticle mixers at frequencies corresponding to the superconducting energy gap”, Department of Physics, Göteborg, ISBN 91-7032-307-0, Chalmers Bibliotheks Tryckeri.Google Scholar
  57. Zorin, A.B. (1985), “Quantum noise in SIS mixers”, IEEE Trans. Magn., MAG-21, 939.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • K. H. Gundlach
    • 1
  1. 1.Institut de Radioastronomie Millimétrique (I.R.A.M.)Domaine UniversitaireSt. Martin d’HèresFrance

Personalised recommendations