Skip to main content

Mechanisms Regulating the Reactions of Human Hemoglobin with Oxygen and Carbon Monoxide

  • Conference paper
Clinical Aspects of O2 Transport and Tissue Oxygenation
  • 104 Accesses

Abstract

The reactions of hemoglobin with oxygen and carbon monoxide are subject to regulation by the heme and the residues surrounding it and by the effectors, also known as heterotopic ligands (H+, Cl-, CO2, and 2,3-diphosphoglycerate), that regulate the equilibrium between its two forms, the oxy or R-structure with high and the deoxy or T-structure with low oxygen affinity. The stereochemical mechanisms of regulation have been studied for many years using a variety of methods. What is new since the subject was last surveyed [1] is determination of the crystal structures at resolutions sufficient to resolve individual atoms of the heme and its surroundings; such structures have now been determined for deoxy, oxy, and carbon monoxyhemoglobin, and for several analogues of transition states in the reaction with oxygen and carbon monoxide. In the past much useful information about the stereochemical mechanism of hemoglobin has come from the study of abnormal human hemoglobins. Now that the genes for the α and ß chains of hemoglobin and for the single chain of myoglobin have been cloned in E. coli, directed mutagenesis has provided new tools for probing the reactions of these proteins with ligands. Finally, an (unsuccessful) search for possible antisickling drugs has led to the discovery of a family of compounds which are more powerful allosteric effectors than the natural one, 2,3-diphosphoglycerate, and combine with sites that are far removed from the diphosphoglycerate binding site.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Perutz MF (1979) Regulation of oxygen affinity of hemoglobin: influence of struc ture of the globin on the heme. Ann Rev Biochem 48:327–386

    Article  CAS  PubMed  Google Scholar 

  2. Perutz MF (1970) Stereochemistry of cooperative effects in haemoglobin. Nature 228:726–739

    Article  CAS  PubMed  Google Scholar 

  3. Watson HC, Kendrew JC (1961) Comparison between the amino-acid sequences of sperm whale myoglobin and of human haemoglobin. Nature 190:670–672

    Article  CAS  PubMed  Google Scholar 

  4. Gill SJ, Di Cera E, Doyle ML, Robert CH (1988) New twists on an old story: hemoglobin. Trends Biochem Sci 13:465–467

    Article  CAS  PubMed  Google Scholar 

  5. Perrella M, Sabionedda L, Lamaja M, Rossi-Bernardi L (1986) The intermediate compounds between human hemoglobin and carbon monoxide at equilibrium and during approach to equilibrium. J Biol Chem 261:8391–8396

    CAS  PubMed  Google Scholar 

  6. Perrella M, Colosimo A, Benazzi L, Samaja M, Rossi-Bernardi L (1988) Intermediate compounds between hemoglobin and carbon monoxide under equilibrium conditions. Symposium on Oxygen Binding and Heme Proteins, Asilomar Conference Grounds, Pacific Grove, California

    Google Scholar 

  7. Angel W-L, Karplus M, Poyart C, Burseaux E (1988) Analysis of proton release in oxygen binding by haemoglobin: implications for the cooperative mechanism. Biochemistry 27:1285–1301

    Article  Google Scholar 

  8. Baldwin JM (1975) Structure and function of haemoglobin. Progr Biophys Mol Biol 29:225–320

    Article  CAS  Google Scholar 

  9. Bunn HF, Forget GB (1985) Hemoglobin, molecular and clinical aspects. WB Saunders, Philadelphia, PA, USA

    Google Scholar 

  10. Fermi G, Perutz MF (1981) Atlas of molecular structures in biology: haemoglobin and myoglobin. Clarendon Press, Oxford

    Google Scholar 

  11. Dickerson RE, Geis I (1983) Hemoglobin: structure, function, evolution, pathol ogy. Benjamin/Cummings Publishing Co, Kenlo Park

    Google Scholar 

  12. Imai K (1982) Allosteric effects in haemoglobin. Cambridge University Press

    Google Scholar 

  13. Perutz MF, Fermi G, Luisi B, Shaanan B, Liddington RC (1987) Stereochemistry of cooperative effects in hemoglobin. Accs Chem Res 20:309–321

    Article  CAS  Google Scholar 

  14. Baldwin JM, Chothia C (1979) Haemoglobin: the structural changes related to ligand binding and its allosteric mechanism. J Mol Biol 129:183–191

    Article  Google Scholar 

  15. Momenteau M, Scheidt WR, Eigenbrot CW, Reed CA (1988) A deoxymyoglobin model with a sterically unhindered axial imidazole. J Am Chem Soc 110:1207–1215

    Article  CAS  Google Scholar 

  16. Gelin RG, Lee AW-M, Karplus M (1983) Hemoglobin tertiary structural change on ligand binding. Its role in the cooperative mechanism. J Mol Biol 171:489–559

    Article  CAS  PubMed  Google Scholar 

  17. Liddington R, Derewenda Z, Dodson G, Harris D (1988) Structure of liganded Tstate of haemoglobin identifies the origin of cooperative oxygen binding. Nature 331:725–728

    Article  CAS  PubMed  Google Scholar 

  18. Arnone A (1972) X-ray diffraction study of binding of 2,3-diphosphoglycerate to human deoxyhaemoglobin. Nature 237:146–149

    Article  CAS  PubMed  Google Scholar 

  19. Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118

    Article  CAS  PubMed  Google Scholar 

  20. Louie C, Tran T, Englander JJ, Englander SW (1988) Allosteric energy at the hemoglobin ß-chain C-terminus studied by hydrogen exchange. J Mol Biol 201:755–764

    Article  CAS  PubMed  Google Scholar 

  21. Fersht AR, Leatherbarrow RJ, Wells TNC (1986) Structure and activity of the tyrosyl-rRNA synthetase: the hydrogen bond in catalysis and specificity. Phil Trans Roy Soc A 317:305–320

    Article  CAS  Google Scholar 

  22. Kilmartin JV (1974) Influence of DPG on the Bohr effect of human haemoglobin. FEBS Letts 38:147–148

    Article  CAS  Google Scholar 

  23. Perutz MF, Kilmartin JV, Nishikura K, Fogg JH, Butler PJG, Rollema HS (1980) Identification of residues contributing to the Bohr effect of human haemoglobin. J Mol Biol 138:649–670

    Article  CAS  PubMed  Google Scholar 

  24. Kilmartin JV, Breen JJ, Roberts GCK, Ho C (1973) Direct measurement of the pK values of an alkaline Bohr group in human haemoglobin. Proc Nat Acad Sci USA 70:1246–1249

    Article  CAS  PubMed  Google Scholar 

  25. Matsukawa S, Itatani Y, Mawatari K, Shimokawa Y, Yoneyama Y (1978) Quantitative evaluation for the role ß-146 His and ß-143 His residues in the Bohr effect of human haemoglobin in the presence of 01 M chloride ion. J Biol Chem 259:11479–11486

    Google Scholar 

  26. Monod J, Changeux JP, Jacob F (1963) Allosteric proteins and molecular control systems. J Mol Biol 6:306–329

    Article  CAS  PubMed  Google Scholar 

  27. Chu AH, Turner BW, Ackers GK (1984) Effects of protons on the oxygen-linked subassembly in human haemoglobin. Biochemistry 23:604–617

    Article  CAS  Google Scholar 

  28. Johnson KA, Olson JS, Phillips GN Jr (1989) The structure of myoglobinethyl isocyanide: histidine as a swinging door for ligand entry. J Mol Biol In the press

    Google Scholar 

  29. Phillips SEV, Schoenborn BP (1981) Neutron diffraction reveals oxygen-histidine hydrogen bond in myoglobin. Nature 292:81–82

    Article  CAS  PubMed  Google Scholar 

  30. Shaanan B (1983) Structure of human oxyhaemoglobin at 2.1 Å resolution. J Mol Biol 171:31–50

    CAS  Google Scholar 

  31. Perutz MF, Mathews FS (1966) An X-ray study of azide methaemoglobin. J Mol Biol 21:199–202

    Article  CAS  PubMed  Google Scholar 

  32. Olson JS, Mathews AJ, Rohlfs RJ, Springer BA, Edelberg KD, Sligar SG, Tame J, Renaud J-P, Nagai K (1988) The role of the distal histidine in myoglobin and haemoglobin. Nature 336:265–266

    Article  CAS  PubMed  Google Scholar 

  33. Szabo A (1978) The kinetic of haemoglobin and transition state theory. Proc Nat Acad Sci USA 75:2108–2111

    Article  CAS  PubMed  Google Scholar 

  34. Kuriyan J, Wilz S, Karplus M, Petsko GA (1986) X-ray structure and refinement of carbonmonoxy (Fell)-myoglobin at 1.5 Å resolution. J Mol Biol 192:133–154

    Article  CAS  PubMed  Google Scholar 

  35. Kim K, Fettinger J, Sessler JL, Cyr M, Hugdahl J, Collman JP, Ibers JA (1989) Structural characterisation of a sterically encumbered iron (II) porphyrin CO com plex. J Amer Chem Soc 111:403–105

    Article  CAS  Google Scholar 

  36. Elber R, Karplus M (1989) Molecular dynamics simulations of myoglobin. (To be published)

    Google Scholar 

  37. Bolognesi M, Cannillo E, Ascenzi P, Giacometti GM, Merli A, Brunori M (1982) Reactivity of ferric aplysia and sperm whale myoglobins towards imidazole: X-ray and binding study. J Mol Biol 158:301–315

    Article  Google Scholar 

  38. Ringe D, Petsko GE, Kerr DE, de Montellano FRO (1984) Reaction of myoglobin with phenylhydrazine a molecular doorstop. Biochemistry 23:2–4

    Article  CAS  PubMed  Google Scholar 

  39. Dalvit C, Wright PE (1987) Assignment of resonances in the 1H nuclear magnetic resonance spectrum of the carbon monoxide complex of sperm whale myoglobin by phase-sensitive two-dimensional techniques. J Mol Biol 194:313–327

    Article  CAS  PubMed  Google Scholar 

  40. Englander SW, Kallenbach NR (1984) Hydrogen exchange and structural dynamics of proteins and nucleic acids. Q Rev Biophys 16:521–565

    Article  Google Scholar 

  41. Calhoun DB, Vanderkooi JM, Woodrow GV III, Englander SW (1983) Penetration of dioxygen into proteins studied by quenching of phosphorescence and fluorescence. Biochemistry 22:1526–1532

    Article  CAS  PubMed  Google Scholar 

  42. Lakowicz JR, Weber G (1973) Quenching of protein fluorescence by oxygen: detection of structural fluctuations in proteins on the nanosecond time scale. Biochemistry 12:4171–4179

    Article  CAS  PubMed  Google Scholar 

  43. Springer BA, Egeberg KD, Sligar SG, Rohlfs RJ, Mathews AJ, Olson JS (1989 a) Discrimination between oxygen and carbon monoxide and inhibition of autoxidation by myoglobin. J Biol Chem 264:3057–3060

    CAS  PubMed  Google Scholar 

  44. Springer BA, Egeberg KD, Sligar SG, Rohlfs RJ, Mathews AJ, Olson JS (1989 b) Site-directed mutagenesis of sperm whale myoglobin: role of His E7 and Val E11 in ligand binding. J Biol Chem (in the press)

    Google Scholar 

  45. Perutz MF, Fermi G, Abraham DJ, Poyart C, Bursaux E (1986) Hemoglobin as a receptor of drugs and peptides: X-ray studies of the stereochemistry of binding. J Amer Chem Soc 108:1064–1078

    Article  CAS  Google Scholar 

  46. Lalezari I, Rahbar S, Lalezari P, Fermi G, Perutz MF (1988) LR16, a compound with potent effects on the oxygen affinity of hemoglobin, on blood cholesterol, and on low density lipoprotein. Proc Nat Acad Sci USA 85:6117–6121

    Article  CAS  PubMed  Google Scholar 

  47. Messana C, Cerdonio M, Shenkin P, Noble RW, Fermi G, Perutz RN, Perutz MF (1978) Influence of quaternary structure of the globin on thermal spin equilibria in different methaemoglobin derivatives. Biochemistry 17:3652–3662

    Article  CAS  PubMed  Google Scholar 

  48. Perutz MF, Sanders JKM, Chenery DH, Noble RW, Pennelly RR, Fung LW-M, Ho C, Giannini I, Pörschke D, Winckler H (1978) Interactions between the quaternary structure of the globin and the spin state of the heme in ferric mixed spin derivatives of hemoglobin. Biochemistry 17:3640–3652

    Article  CAS  PubMed  Google Scholar 

  49. Philo S, Dreyer U (1985) Quaternary structure has little influence on spin states in mixed-spin human methemoglobins. Biochemistry 24:2985–2991

    Article  CAS  PubMed  Google Scholar 

  50. Derewenda Z, Dodson G, Emsley P, Harris D, Nagai K, Perutz MF, Renaud J-P (1989) The stereochemistry of CO binding to normal adult and Cowtown haemoglobins. J Mol Biol (in the press)

    Google Scholar 

  51. Noble RW, De Young A, Vitale S, Cerdonio M, Dilorio EE (1989) Spin equilibria of human methemoglobin: effect of bezafibrate and inositol hexaphosphate as measured by susceptometry and visible spectroscopy. Biochemistra 28:5288–5292

    Article  CAS  Google Scholar 

  52. Noble RW, DeYoung A, Rousseau DL (1989) Spin equilibrium in human methemoglobin: effects of inositol hexaphosphate and bezafibrate as measured by resonance Raman spectroscopy. Biochemistry 28:5293–5297

    Article  CAS  PubMed  Google Scholar 

  53. Lalezari I, Lalezari P, Poyart C, Marden M, Kister J, Bohn B, Fermi G, Perutz MF (1989) New effectors of human hemoglobin: structure and function. Submitted to Biochemistry

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Perutz, M.F. (1989). Mechanisms Regulating the Reactions of Human Hemoglobin with Oxygen and Carbon Monoxide. In: Reinhart, K., Eyrich, K. (eds) Clinical Aspects of O2 Transport and Tissue Oxygenation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83872-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83872-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51470-1

  • Online ISBN: 978-3-642-83872-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics