Skip to main content

Part of the book series: Lecture Notes in Engineering ((LNENG,volume 46))

Abstract

The typical angle of attack for maximum lift of a delta wing is about 35°, which is much higher than for a two-dimensional airfoil. The delta wing is, therefore, suitable for highly maneuverable aircraft. In this paper, experimental results for delta wings is reviewed. The review is made from the perspective of fundamental fluid dynamic mechanisms. In particular, the balance between vorticity generation on the surface and freestream convection of it is used to understand how different parameters affect the leading edge vortices which dominate the aerodynamics of a delta wing at high angles of attack.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bartlett, G.E. and Vidal, R.J.,”Experimental Investigation of Influence of Edge Shape on the Aerodynamic Characteristics of Low Aspect Ratio Wings at Low Speeds“, J. Aero. Sci., Vol 22, 1955, pp 517–533.

    Google Scholar 

  • Bradley, R.G. and Wray, W.O.,”A Conceptual Study of Leading-Edge-Vortex Enhancement by Blowing“, J. Aircraft, Vol. 11, No. 1, Jan. 1974, pp 33–38.

    Article  Google Scholar 

  • Campbell, J.F.,”Augmentation of Vortex Lift by Spanwise Blowing“, J. Aircraft, Vol. 13, No. 9, Sept. 1976, pp 727–732.

    Article  Google Scholar 

  • Didden, N. and Ho, C.M.,”Unsteady Separation in a Boundary Layer Produced by an Impinging Jet", J. of Fluid Mech., Vol. 160, 1985.

    Google Scholar 

  • Earnshaw, P.B. and Lawford, J.A.,”Low-Speed Wind Tunnel Experiments on a Series of Sharp-Edged Delta Wings", Aero. Res. Council, R & M No. 3424, 1964

    Google Scholar 

  • Elle, B.J.,”An Investigation at Low Speed of the Flow near the Apex of Thin Delta Wings with Sharp Leading Edges", Aero. Res. Council, R Sc M No. 3176, 1961.

    Google Scholar 

  • Erickson, G.E.,”Water-Tunnel Studies of Leading-Edge Vortices“, J. Aircraft, Vol. 19, No. 6, June 1982, pp. 442–448.

    Article  Google Scholar 

  • Ericsson, L.E.,”The Fluid Mechanics of Slender Wing Rock“, J. Aircraft, Vol. 21, No. 5, May 1984, pp. 322–328.

    Article  Google Scholar 

  • Ericsson, L.E. and Reding, J.P.,”Approximate Nonlinear Slender Wing Aerodynamics“, J. Aircraft, Vol. 14, No. 12, Dec. 1977, pp. 1197–1204.

    Article  Google Scholar 

  • Escudier, M.P. and Zehnder, N.,”Vortex-Flow Regimes“,J. Fluid Mech., Vol. 115, 1982, pp 105–121.

    Article  ADS  Google Scholar 

  • Fink, P.T. and Taylor, J.,”Some Early Experiments on Vortex Separation", Aero. Res. Council, R & M No. 3489, 1967

    Google Scholar 

  • Freymuth, P.,”Further Visualization of Combined Wing Tip and Starting Vortex Systems“, AIAA J., Vol. 25, No. 9, Sept. 1987, pp. 1153–1159.

    Google Scholar 

  • Gad-el-Hak, M.,”Unsteady Separation on Lifting Surfaces", Appl. M.ch. Rev., Vol. 40, 1987, pp. 441–453.

    Google Scholar 

  • Gad-el-Hak, M. and Blackwelder, R.F.,”Control of the Discrete Vortices from a Delta Wing“, AIAA J., Vol 25, 1987, pp. 1042–1049.

    Google Scholar 

  • Gad-el-Hak, M. and Ho., C.M.,”The Pitching Delta Wing“, AIAA J., Vol. 23, No. 11, Nov. 1985, pp 1660–1665.

    Google Scholar 

  • Harvey, L.K.,”Some Measurements on a Yawed Slender Delta Wing with Leading-Edge Separation“, Aero. Res. Council, R & M No. 3160, 1958.

    Google Scholar 

  • Hummel, D.,”Untersuchungen uber das Aufplatzen der Wirbel an schlanken Deltaflugeln“, Z. Flugwiss., Vol. 13, No. 5, 1965, pp 158–168.

    Google Scholar 

  • Hummel, D.,”Zur Umstromung scharfkantiger schlanker Deltaflugel bei grossen Anstellwinkeln“, Z. Flugwiss., Vol. 15, No. 10, 1967, pp 376–385.

    Google Scholar 

  • Hwang, C. and Pi, W.S.,”Some Observations on the Mechanism of Aircraft Wing Rock“, J. Aircraft, Vol. 16, No. 6, Jun. 1979, pp 366–373.

    Google Scholar 

  • Lamar, J.E.,”Recent Studies of Subsonic Vortex Lift Including Parameters Affecting Stable Leading-Edge Vortex Flow“, J. Aircraft, Vol. 14, No. 12, Dec. 1977, pp 1205–1211.

    Article  Google Scholar 

  • Lamar, J.E. and Campbell, J.F.,”Vortex Flaps-Advanced Control Devices for Supercruise Fighters“, Aerospace America, Jan. 1984.

    Google Scholar 

  • Lambourne, N.C. and Bryer, D.W.,”The Bursting of Leading-Edge Vortices-some Observations and Discussion of the Phenomenon“, Aero. Res. Council, R & M no. 3282, 1961

    Google Scholar 

  • Lambourne, N.C., Bryer, D.W. and Maybrey, J.F.M.,”The Behaviour of the Leading-fdge Vortices over a Delta Wing Following a Sudden Change of Incidence“, Aero. Res. Council, R & M no. 3645, 1969.

    Google Scholar 

  • Lee, G.H.,”Note on the Flow Around Delta Wings with Sharp Leading Edges“, Aero. Res. Council, R & M No. 3070, 1955.

    Google Scholar 

  • Lee, M., Shih, C. and Ho, C.M.,”Response of a Delta Wing in Steady and Unsteady Flow“, Proc. Forum on Unsteady Flow Separation, ASME 1987 Fluids Engineering Conference, FED, Vol. 52, pp 19–24.

    Google Scholar 

  • Leibovich, S.,”Vortex Stability and Breakdown: Survey and Extension“, AIAA J., Vol. 22, No. 9, Sept. 1984, pp 1192–1206.

    Google Scholar 

  • Levin, D. and Katz, J.,”Dynamic Load Measurements with Delta Wings Undergoing Self-Induced Roll Oscillations“, J. Aircraft, Vol. 21, No. 1, Jan. 1984, pp 30–36.

    Article  Google Scholar 

  • Maltby, R.L., Engler, P.B. and Keating, R.F.A., with addendum by Moss, ‘G.F.,”Some Exploratory Measurements by Leading Edge Vortex Positions on a Delta wing Oscillating in Heave“, Aero. Res. Council, R & M No. 3410, 1963.

    Google Scholar 

  • Marchman, J.F.,”Effects of Heating on Leading Edge Vortices in Subsonic Flow“, J. Aircraft, Vol. 12, No. 12, Feb. 1975, pp 121–123.

    Article  Google Scholar 

  • Marchman, J.F.,”Aerodynamics of Inverted Leading-Edge Flaps on Delta Wings“, J. Aircraft, Vol. 18, No. 12, Dec. 1981, pp 1051–1056.

    Article  Google Scholar 

  • McKernan, J.F. and Nelson, R.C.,” An Investigation of the Breakdown of the Leading Edge Vortices on a Delta Wing at High Angles of Attack“, AIAA paper no. 83–2114, 1983.

    Google Scholar 

  • Payne, F.M.,”The Structure of Leading Edge Vortex Flows Including Vortex Breakdown“, Ph.D. Dissertation, Dept. Aerospace and Mechanical Eng., Univ. of Notre Dame, May 1987.

    Google Scholar 

  • Payne, F.M., Ng, T.T., Nelson, R. C. and Schiff, L. B.,” Visualization and Wake Surveys of Vortical Flow Over a Delta Wing“,AIAA J., Vol. 26, No. 1, Jan, 1988, pp. 137–143.

    Google Scholar 

  • Parker, A.G.,”Aerodynamic Characteristics of Slender Wings with Sharp Leading Edges-A Review“, J. Aircraft, Vol. 13, No. 3, March 1976, pp 161–168.

    Article  Google Scholar 

  • Patel, M.H.,”The Delta Wing in Oscillatory Gusts“, AIAA J., Vol. 18, No. 5, May 1980, pp 481–486.

    Google Scholar 

  • Polhamus, E.C.,”Predictions of Vortex-Lift Characteristics by a Leading-Edge-Suction Analogy“, J. Aircraft, Vol. 8., No. 4, April 1971, pp 193–199.

    Article  Google Scholar 

  • Rao, D.M. and Buter, T.A.,”Experimental and Computational Studies of a Delta Wing Apex-Flap“, AIAA paper no. 83–1815.

    Google Scholar 

  • Rao, D.M. and Johnson, T.D. Jr.,”Investigation of Delta Wing Leading-Edge Devices“, J. Aircraft, Vol. 18, No. 3, March 1981, pp 161–167.

    Article  Google Scholar 

  • Reynolds, W.C. and Carr, L.W.,”Review of Unsteady, Driven, Separated Flows“, AIAA paper no. 85–0527.

    Google Scholar 

  • Rossow, V.J.,”Lift Enhancement by an Externally Trapped Vortex“, J. Aircraft, Vol. 15, No. 9, Sept. 1978, pp 618–625.

    Article  Google Scholar 

  • Sforza, P.M., Stasi, W., Pazienza, W. and Smorto, M.,” Flow Measurements in Leading-Edge Devices“, AIAA J., Vol. 16, March 1978, pp 218–224.

    Google Scholar 

  • Shih, C., Lee, M. and Ho, C.M.,”Control of Separated Flow on a Symmetric Airfoil“, Proc. of IUTAM Conf., Banglore, India, Jan, 1987.

    Google Scholar 

  • Spedding, G.R., Maxworthy, T. and Rignot, E.,”Unsteady Vortex Flows Over Delta Wings“, Proc. 2nd. AFOSR Workshop on Unsteady and Separated Flows, Colorado Springs, Colorado, July 1987.

    Google Scholar 

  • Stanbrook, A, and Squire, L.C.,”Possible Types of Flow at Swept Leading Edges“, Aeronautical Quarterly, Vol. XV, 1964, pp 72–82.

    Google Scholar 

  • Squire, L.C.,”Flow Regimes over Delta Wings at Supersonic and Hypersonic Speeds“, Aeronautical Quarterly, Vol. XXVII, 1976, pp 1–14.

    Google Scholar 

  • Squire, L.C., Jones, J.G. and Stanbrook, A.,An Experimental Investigation of the Characteristics of some Plane and Cambered 65110 Delta Wings at Mach Numbers from 0.7 to 2.0“, Aero. Res. Council, R & M No. 3305, 1961.

    Google Scholar 

  • Trebble, W.J.G.,”Exploratory Investigation of the Effects of Blowing from the Leading Edge of a Delta Wing“, Aero. Res. Council, R & M No. 3518, 1966.

    Google Scholar 

  • Wahls, R.A., Vess, R.J. and Moskovitz, C.A.,”Experimental Investigation of Apex Fence Flaps on Delta Wings“, J. Aircraft, Vol. 23, No. 10, Oct. 1986, pp 789–797.

    Article  Google Scholar 

  • Wedemeyer, E.,”Vortex Breakdown", AGARD/VKI Lecture Series No.121, March 1982.

    Google Scholar 

  • Wentz., W.H. Jr.,”Effects of Leading Edge Camber on Low Speed Characteristics of Slender Delta Wings“, NASA CR-2002, Oct. 1972.

    Google Scholar 

  • Wentz, W.H. and Kohlman, D.L.,”Vortex Breakdown on Slender Sharp-Edged Wings“, J. Aircraft, Vol. 8, No. 3, March 1971, pp 156–161.

    Article  Google Scholar 

  • Wood, R.M. and Miller, D.S.,”Fundamental Aerodynamic Characteristics of Delta Wings with Leading-Edge Vortex Flows“, J. Aircraft, Vol. 22, No. 6, June 1985, pp 479–485.

    Article  Google Scholar 

  • Wood, N.J. and Roberts, L.,”The Control of Vortical Lift on Delta Wings by Tangential Leading Edge Blowing“, AIAA paper No.87–0158.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Lee, M., Ho, CM. (1989). Vortex Dynamics of Delta Wings. In: Gad-el-Hak, M. (eds) Frontiers in Experimental Fluid Mechanics. Lecture Notes in Engineering, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83831-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83831-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51296-7

  • Online ISBN: 978-3-642-83831-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics