Advertisement

Bildsynthese von Objekten mit fraktalen Eigenschaften

Chapter
  • 48 Downloads

Zusammenfassung

In dieser Arbeit wird das optische Erscheinungsbild von Oberflächen mit fraktalen Eigenschaften in der Bildebene berechnet und visualisiert. Das Modell beruht auf einem einfachen elektromagnetischen Streumodell (Strahlenoptik), das die Berechnung der statistischen Momente und der Autokorrelationsfunktion der gestreuten Lichtintensität erlaubt. Mit diesen statistischen Parametern werden die Intensitätsfluktuationen und die Struktur von ebenen Texturen in Abhängigkeit von der fraktalen Dimension und der Beobachterentfernung simuliert und diskutiert.

Abstract

This paper discusses the optical appearance of surfaces with fractal properties and their computation as an image. The underlying model is based on electromagnetic scattering and allows the computation of the statistical moments and the autocorrelation function of the scattered light intensities. With these statistical parameters we discuss the simulation of intensity fluctuations and structure of two-dimensional texture patterns depending on fractal dimension and viewing distance.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Quellen

  1. [1]
    J. Amantanides, “Realism in Computer Graphics: A Survey”, IEEE CG&A, (Jan. 1987), 44-56.Google Scholar
  2. [2]
    J. P. Lewis, “Generalized Stochastic Subdivision”, ACM Trans, on Graphics 6, (July 1987), 167 -190.CrossRefGoogle Scholar
  3. [3]
    E. L. Church, “Fractal Surface Finish”, Appl. Optics 27, No. 8 (1988), 1518 -1526.CrossRefGoogle Scholar
  4. [4]
    B. B. Mandelbrot, “Stochastic Models for the Earth’s Relief, the Shape and the Fractal Dimension of the Coastlines, and the Number Area Rule for Islands”, Proc. Nat. Acad. Sci. USA 72, (1975), 3825-3828.CrossRefMathSciNetGoogle Scholar
  5. [5]
    B. B. Mandelbrot, “Die fraktale Geometrie der Natur”, Birkhäuser-Verlag, Basel, 1987.zbMATHGoogle Scholar
  6. [6]
    R. F. Voss, “Random Fractal Forgeries”, SIGGRAPH ’86, Course Notes 11, Dallas, 1986.Google Scholar
  7. [7]
    A. Fournier, D. Fussel, L. Carpenter, “Computer Rendering of Stochastic Models”, Comm. of the ACM 25, (1982), 371-384.CrossRefGoogle Scholar
  8. [8]
    A. P. Pentland, “Fractal-Based Description of Natural Scenes”, IEEE Trans. PAMI-6, No. 6 (1984), 661-674.Google Scholar
  9. [9]
    W. Krüger, “Intensity Fluctuations and Natural Texturing”, Computer Graphics 22, No. 4 (1988), 213-220.CrossRefGoogle Scholar
  10. [10]
    E. Jakeman, P. N. Pusey, “Non-Gaussian Fluctuations in Electromagnetic Radiation Scattered by a Random Phase Screen”, J. Phys. A8, No. 3 (1975), 369-391.Google Scholar
  11. [11]
    M. V. Berry, “Diffractals”, J. Phys. A12, No. 6 (1979), 781-797.Google Scholar
  12. [12]
    E. Jakeman, “Fresnel Scattering by a Corrugated Random Surface with Fractal Slope”, J. Opt. Soc. Am. 72, No. 8 (1982), 1034 -1041.CrossRefGoogle Scholar
  13. [13]
    P. Beckmann, A. Spizzichino, “The Scattering of Electromagnetic Waves from Rough Surfaces”, McMillan, New York, 1963.zbMATHGoogle Scholar
  14. [14]
    R. L. Cook, K. E. Torrance, “A Reflectance Model for Computer Graphics”, Computer Graphics 13, No. 3 (1981), 307-316.CrossRefGoogle Scholar
  15. [15]
    E. S. Pearson, H. O. Hartley (eds.), “Biometrika Tables for Statisticians”, vol. 2, Biometrika Trust, 1976, 307-316.Google Scholar
  16. [16]
    W. K. Pratt, O. D. Faugeras, A. Gagalowicz, “Applications of Stochastic Texture Field Models to Image Processing”, Proc. of the IEEE 69, No. 5 (1981), 542-551.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  1. 1.ART + COM ProjektHdK BerlinBerlin 12Deutschland

Personalised recommendations