Lyapunov Functions for Thermomechanics with Spatially Varying Boundary Temperatures

  • J. M. Ball
  • G. Knowles


Consider a continuous body subjected to conservative body and surface forces, with a part ∂Ω 2 of the boundary maintained at a temperature θ = θ 0(X) and with the remainder of the boundary thermally insulated. A calculation of Duhem [1911] shows that if θ 0 is constant then the equations of motion possess a Lyapunov function, the equilibrium free energy, given in a standard notation (see Section 2) by
$$E = athop {nt ll }imits_mega Reft( {rac{1}{2}{{eft| psilon ight|}^2} + U + si - {heta _0}ta } ight)dX - athop {nt {{t_R} dot xdA.} }imits_{artial mega ackslash artial {mega _1}} $$


Lyapunov Function Reference Configuration Free Energy Function Continuous Body Heat Flux Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. J. M. Ball [1977] Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63, 337–403.MATHGoogle Scholar
  2. J. M. Ball [1984] Material instabilities and the calculus of variations, in “Phase Transformations and Material Instabilities in Solids”, ed. M. Gurtin, Academic Press.Google Scholar
  3. J. M. Ball & G. Knowles [1985] in preparation.Google Scholar
  4. J. M. Ball & F. Murat [1984] WI1,p-quasiconvexity and variational problems for multiple integrals, J. Functional Analysis 58, 225–253.CrossRefMATHMathSciNetGoogle Scholar
  5. O. Bolza [1904] “Lectures on the Calculus of Variations”, Reprinted by Chelsea, N.Y., 1973.MATHGoogle Scholar
  6. M.Chicco [ 1970 ] Principio di massimo per soluzioni di problemi al contorno misti per equazioni ellittiche di tipo variazionale, Boll. Unione Mat. Ital. (4) 3, 384–394.MATHMathSciNetGoogle Scholar
  7. B. D. Coleman & E. H. Dill [1973] On thermodynamics and the stability of motion of materials with memory, Arch. Rational Mech. Anal. 51, 1–53.MATHMathSciNetGoogle Scholar
  8. C. M. Dafermos [1983] Hyperbolic systems of conservation laws, in “Systems of Nonlinear Partial Differential Equations” ed. J. M. Ball, D. Reidel, 25–70.Google Scholar
  9. P. Duhem [1911] “Traité d’Enérgetique ou de Thermodynamique Générale”, Gauthier-Villars, Paris.MATHGoogle Scholar
  10. J. L. Ericksen [1966] Thermoelastic stability, Proc. 5t National Cong. Appl. Mech. 187–193.Google Scholar
  11. W. L. Kath & D. S. Cohen [ 1982 ] Waiting-time behavior in a nonlinear diffusion equation, Studies in Applied Math. 67, 79–105.MATHMathSciNetGoogle Scholar
  12. P. Hartman [ 1964 ] “Ordinary Differential Equations”, John Wiley & Sons, New York, reprinted by Birkhauser, Boston, 1982.MATHGoogle Scholar
  13. E. W. Larsen & G. C. Pomraning [ 1980 ] Asymptotic analysis of nonlinear Marshal waves, SIAM J. Appl. Math. 39, 201–212.MATHADSMathSciNetGoogle Scholar
  14. C-S. Man [ 1985 ] Dynamic admissible states, negative absolute temperature, and the entropy maximum principle, preprint.Google Scholar
  15. M. Marcus & V. J. Mizel [ 1972 ] Absolute continuity on tracks and mappings of Sobolev spaces, Arch. Rational Mech. Anal. 45, 294–320.CrossRefMATHADSMathSciNetGoogle Scholar
  16. C. B. Morrey [ 1966 ] “Multiple Integrals in the Calculus of Variations”, Springer.Google Scholar
  17. F. Rothe [ 1984 ] “Global Solutions of Reaction-Diffusion Systems”, Springer Lecture Notes in Mathematics Vol. 1072.MATHGoogle Scholar
  18. N. Trudinger [ 1977 ] Maximum principles for linear, non-uniformly elliptic operators with measurable coefficients, Math. Zeitschrift 156, 291–301.CrossRefMATHMathSciNetGoogle Scholar
  19. C. Truesdell [ 1984 ] “Rational Thermodynamics”, 2nd edition, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo.CrossRefMATHGoogle Scholar
  20. Y. B. Zeldovich & Y. P. Raizer [ 1969 ], “Physics of Shock Waves & High Temperature Hydrodynamic Phenomena”, vol. II, Academic Press, New York.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • J. M. Ball
    • 1
    • 2
  • G. Knowles
    • 1
    • 2
  1. 1.Department of MathematicsHeriot-Watt UniversityEdinburghScotland
  2. 2.Department of Electrical EngineeringImperial College of Sciene and TechnologyLondonUK

Personalised recommendations