Lyapunov Functions for Thermomechanics with Spatially Varying Boundary Temperatures

  • J. M. Ball
  • G. Knowles

Abstract

Consider a continuous body subjected to conservative body and surface forces, with a part ∂Ω 2 of the boundary maintained at a temperature θ = θ 0(X) and with the remainder of the boundary thermally insulated. A calculation of Duhem [1911] shows that if θ 0 is constant then the equations of motion possess a Lyapunov function, the equilibrium free energy, given in a standard notation (see Section 2) by
$$E = athop {nt ll }imits_mega Reft( {rac{1}{2}{{eft| psilon ight|}^2} + U + si - {heta _0}ta } ight)dX - athop {nt {{t_R} dot xdA.} }imits_{artial mega ackslash artial {mega _1}} $$
(1.1)

Keywords

Entropy Convection Congo 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. M. Ball [1977] Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63, 337–403.MATHGoogle Scholar
  2. J. M. Ball [1984] Material instabilities and the calculus of variations, in “Phase Transformations and Material Instabilities in Solids”, ed. M. Gurtin, Academic Press.Google Scholar
  3. J. M. Ball & G. Knowles [1985] in preparation.Google Scholar
  4. J. M. Ball & F. Murat [1984] WI1,p-quasiconvexity and variational problems for multiple integrals, J. Functional Analysis 58, 225–253.CrossRefMATHMathSciNetGoogle Scholar
  5. O. Bolza [1904] “Lectures on the Calculus of Variations”, Reprinted by Chelsea, N.Y., 1973.MATHGoogle Scholar
  6. M.Chicco [ 1970 ] Principio di massimo per soluzioni di problemi al contorno misti per equazioni ellittiche di tipo variazionale, Boll. Unione Mat. Ital. (4) 3, 384–394.MATHMathSciNetGoogle Scholar
  7. B. D. Coleman & E. H. Dill [1973] On thermodynamics and the stability of motion of materials with memory, Arch. Rational Mech. Anal. 51, 1–53.MATHMathSciNetGoogle Scholar
  8. C. M. Dafermos [1983] Hyperbolic systems of conservation laws, in “Systems of Nonlinear Partial Differential Equations” ed. J. M. Ball, D. Reidel, 25–70.Google Scholar
  9. P. Duhem [1911] “Traité d’Enérgetique ou de Thermodynamique Générale”, Gauthier-Villars, Paris.MATHGoogle Scholar
  10. J. L. Ericksen [1966] Thermoelastic stability, Proc. 5t National Cong. Appl. Mech. 187–193.Google Scholar
  11. W. L. Kath & D. S. Cohen [ 1982 ] Waiting-time behavior in a nonlinear diffusion equation, Studies in Applied Math. 67, 79–105.MATHMathSciNetGoogle Scholar
  12. P. Hartman [ 1964 ] “Ordinary Differential Equations”, John Wiley & Sons, New York, reprinted by Birkhauser, Boston, 1982.MATHGoogle Scholar
  13. E. W. Larsen & G. C. Pomraning [ 1980 ] Asymptotic analysis of nonlinear Marshal waves, SIAM J. Appl. Math. 39, 201–212.MATHADSMathSciNetGoogle Scholar
  14. C-S. Man [ 1985 ] Dynamic admissible states, negative absolute temperature, and the entropy maximum principle, preprint.Google Scholar
  15. M. Marcus & V. J. Mizel [ 1972 ] Absolute continuity on tracks and mappings of Sobolev spaces, Arch. Rational Mech. Anal. 45, 294–320.CrossRefMATHADSMathSciNetGoogle Scholar
  16. C. B. Morrey [ 1966 ] “Multiple Integrals in the Calculus of Variations”, Springer.Google Scholar
  17. F. Rothe [ 1984 ] “Global Solutions of Reaction-Diffusion Systems”, Springer Lecture Notes in Mathematics Vol. 1072.MATHGoogle Scholar
  18. N. Trudinger [ 1977 ] Maximum principles for linear, non-uniformly elliptic operators with measurable coefficients, Math. Zeitschrift 156, 291–301.CrossRefMATHMathSciNetGoogle Scholar
  19. C. Truesdell [ 1984 ] “Rational Thermodynamics”, 2nd edition, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo.CrossRefMATHGoogle Scholar
  20. Y. B. Zeldovich & Y. P. Raizer [ 1969 ], “Physics of Shock Waves & High Temperature Hydrodynamic Phenomena”, vol. II, Academic Press, New York.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • J. M. Ball
    • 1
    • 2
  • G. Knowles
    • 1
    • 2
  1. 1.Department of MathematicsHeriot-Watt UniversityEdinburghScotland
  2. 2.Department of Electrical EngineeringImperial College of Sciene and TechnologyLondonUK

Personalised recommendations