Resolution Requirements for Numerical Simulations of Transition

  • Thomas A. Zang
  • Steven E. Krist
  • M. Yousuff Hussaini
Conference paper
Part of the Lecture Notes in Engineering book series (LNENG, volume 43)


The resolution requirements for direct numerical simulations of transition to turbulence are investigated. A reliable resolution criterion is determined from the results of several detailed simulations of channel and boundary-layer transition.


Vortex Convection Vorticity Advection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Biringen, S. (1984): Final stages of transition to turbulence in plane channel flow, J. Fl. Mech., Vol. 148, pp. 413 - 442.CrossRefADSMATHGoogle Scholar
  2. Biringen, S. (1987): Three-dimensional Vortical Structures of Transition in Plane Channel Flow, AIAA Paper No. 87-0046.Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; and Zang, T. A. (1988): Spectral Methods in Fluid Dynamics, Springer-Verlag, Berlin.Google Scholar
  3. Curry, J.; Herring, J.; Loncaric, J.; and Orszag, S. A. (1984): Order and disorder in two-and three-dimensional Benard convection, J. Fl. Mech., Vol. 147, pp. 1 - 38.CrossRefADSMATHGoogle Scholar
  4. Gilbert, N.; and Kleiser, L. (1986): Subcritical transition to turbulence in channel flow, in Direct and Large Eddy Simulation of Turbulence, U. Schumann and R. Friedrich (eds.), pp. 1 - 18, Vieweg, Braunschweig.Google Scholar
  5. Hama, F. R.; and Nutant, J. (1963): Detailed flow-field observations in the transition process in a thick boundary layer, in Proc. of the 1963 Heat Transfer and Fluid Mechanics Institute, pp. 77 - 93, Stanford Univ. Press, Palo Alto.Google Scholar
  6. Kim, J.; Moin, P.; and Moser, R. (1987): Turbulence statistics in fully developed channel flow at low Reynolds number, J. Fl. Mech., Vol. 177, pp. 133 - 166.CrossRefADSMATHGoogle Scholar
  7. Kovasznay, L. S.; Komoda, II.; and Vasudeva, B. R. (1962): Detailed flow field in transition, in Proc. 1962 Heat Transfer and Fluid Mechanics Institute, pp. 1 - 16, Stanford Univ. Press, Palo Alto.Google Scholar
  8. Lowery, P. S.; Reynolds, W. C.; and Mansour, N. N. (1987): Passive Scalar Entrainment and Mixing in a Forced, Spatially-developing Mixing Layer, AIAA Paper No. 87 - 0132.Google Scholar
  9. Malik, M. R.; Zang, T. A.; and Hussaini, M. Y. (1985): A spectral collocation method for the Navier-Stokes equations, J. Comput. Phys., Vol. 61, pp. 64 - 88.CrossRefADSMathSciNetMATHGoogle Scholar
  10. Marcus, P. S. (1984): Simulation of Taylor-Couette flow. Part 2. Numerical results for wavy vortex flow with one traveling wave, J. Fl. Mech., Vol. 146, pp. 65 - 113.CrossRefADSMATHGoogle Scholar
  11. Metcalfe, R. W.; Orszag, S. A.; Brachet, M. E.; Menon, S.; and Riley, J. J. (1987): Secondary instability of a temporally growing mixing layer, J. FI. Mech., Vol. 184, pp. 207 - 243.CrossRefADSMATHGoogle Scholar
  12. Orszag, S. A. (1971): Accurate solution of the Orr-Sommerfeld equation, J. Fl. Mech., Vo. 50, pp. 689 - 703.CrossRefADSMATHGoogle Scholar
  13. Orszag, S. A.; and Kells, L. C. (1980): Transition to turbulence in plane Poiseuille flow and plane Couette flow, J. Fl. Mech., Vol. 96, pp. 159 - 205.CrossRefADSMATHGoogle Scholar
  14. Williams, D. R.; Fasel, H.; and Hama, F. R. (1984): Experimental determination of the three-dimensional vorticity field in the boundary layer transition process, J. Fl. Mech., Vol. 149, pp. 179 - 203.CrossRefADSGoogle Scholar
  15. Wray, A. A.; and Hussaini, M. Y. (1984): Numerical experiments in boundary-layer stability, Proc. Roy. Soc. London, Ser. A, Vol. 392, pp. 373 - 389.CrossRefADSMATHGoogle Scholar
  16. Zang, T. A. (1989): On the rotation and skew-symmetric forms for incompressible flow simulations, Appl. Numer Math., in press.Google Scholar
  17. Zang, T. A.; and Hussaini, M. Y. (1986): On spectral multigrid methods for the time-dependent Navier-Stokes equations, Appl. Math. Comp., Vol. 19, pp. 359 - 372.MathSciNetMATHGoogle Scholar
  18. Zang, T. A.; and Hussaini, M. Y. (1987): Numerical simulation of nonlinear interactions in channel and boundary-layer transition, in Nonlinear Wave Interactions in Fluids - AMDVol. 87, R. W. Miksad, T. R. Akylas and T. Herbert, eds., ASME, New York, pp. 131 - 145.Google Scholar
  19. Zang, T. A.; and Krist, S. E. (1989): Numerical experiments on stability and transition in planeGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1989

Authors and Affiliations

  • Thomas A. Zang
    • 1
  • Steven E. Krist
    • 1
  • M. Yousuff Hussaini
    • 2
  1. 1.NASA Langley Research CenterUSA
  2. 2.NASA Langley Research CenterI.C.A.S.E.USA

Personalised recommendations