Resolution Requirements for Numerical Simulations of Transition

  • Thomas A. Zang
  • Steven E. Krist
  • M. Yousuff Hussaini
Conference paper
Part of the Lecture Notes in Engineering book series (LNENG, volume 43)


The resolution requirements for direct numerical simulations of transition to turbulence are investigated. A reliable resolution criterion is determined from the results of several detailed simulations of channel and boundary-layer transition.


Channel Flow Direct Numerical Simulation Vertical Shear Spanwise Direction Streamwise Vortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Biringen, S. (1984): Final stages of transition to turbulence in plane channel flow, J. Fl. Mech., Vol. 148, pp. 413 - 442.CrossRefADSMATHGoogle Scholar
  2. Biringen, S. (1987): Three-dimensional Vortical Structures of Transition in Plane Channel Flow, AIAA Paper No. 87-0046.Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; and Zang, T. A. (1988): Spectral Methods in Fluid Dynamics, Springer-Verlag, Berlin.Google Scholar
  3. Curry, J.; Herring, J.; Loncaric, J.; and Orszag, S. A. (1984): Order and disorder in two-and three-dimensional Benard convection, J. Fl. Mech., Vol. 147, pp. 1 - 38.CrossRefADSMATHGoogle Scholar
  4. Gilbert, N.; and Kleiser, L. (1986): Subcritical transition to turbulence in channel flow, in Direct and Large Eddy Simulation of Turbulence, U. Schumann and R. Friedrich (eds.), pp. 1 - 18, Vieweg, Braunschweig.Google Scholar
  5. Hama, F. R.; and Nutant, J. (1963): Detailed flow-field observations in the transition process in a thick boundary layer, in Proc. of the 1963 Heat Transfer and Fluid Mechanics Institute, pp. 77 - 93, Stanford Univ. Press, Palo Alto.Google Scholar
  6. Kim, J.; Moin, P.; and Moser, R. (1987): Turbulence statistics in fully developed channel flow at low Reynolds number, J. Fl. Mech., Vol. 177, pp. 133 - 166.CrossRefADSMATHGoogle Scholar
  7. Kovasznay, L. S.; Komoda, II.; and Vasudeva, B. R. (1962): Detailed flow field in transition, in Proc. 1962 Heat Transfer and Fluid Mechanics Institute, pp. 1 - 16, Stanford Univ. Press, Palo Alto.Google Scholar
  8. Lowery, P. S.; Reynolds, W. C.; and Mansour, N. N. (1987): Passive Scalar Entrainment and Mixing in a Forced, Spatially-developing Mixing Layer, AIAA Paper No. 87 - 0132.Google Scholar
  9. Malik, M. R.; Zang, T. A.; and Hussaini, M. Y. (1985): A spectral collocation method for the Navier-Stokes equations, J. Comput. Phys., Vol. 61, pp. 64 - 88.CrossRefADSMathSciNetMATHGoogle Scholar
  10. Marcus, P. S. (1984): Simulation of Taylor-Couette flow. Part 2. Numerical results for wavy vortex flow with one traveling wave, J. Fl. Mech., Vol. 146, pp. 65 - 113.CrossRefADSMATHGoogle Scholar
  11. Metcalfe, R. W.; Orszag, S. A.; Brachet, M. E.; Menon, S.; and Riley, J. J. (1987): Secondary instability of a temporally growing mixing layer, J. FI. Mech., Vol. 184, pp. 207 - 243.CrossRefADSMATHGoogle Scholar
  12. Orszag, S. A. (1971): Accurate solution of the Orr-Sommerfeld equation, J. Fl. Mech., Vo. 50, pp. 689 - 703.CrossRefADSMATHGoogle Scholar
  13. Orszag, S. A.; and Kells, L. C. (1980): Transition to turbulence in plane Poiseuille flow and plane Couette flow, J. Fl. Mech., Vol. 96, pp. 159 - 205.CrossRefADSMATHGoogle Scholar
  14. Williams, D. R.; Fasel, H.; and Hama, F. R. (1984): Experimental determination of the three-dimensional vorticity field in the boundary layer transition process, J. Fl. Mech., Vol. 149, pp. 179 - 203.CrossRefADSGoogle Scholar
  15. Wray, A. A.; and Hussaini, M. Y. (1984): Numerical experiments in boundary-layer stability, Proc. Roy. Soc. London, Ser. A, Vol. 392, pp. 373 - 389.CrossRefADSMATHGoogle Scholar
  16. Zang, T. A. (1989): On the rotation and skew-symmetric forms for incompressible flow simulations, Appl. Numer Math., in press.Google Scholar
  17. Zang, T. A.; and Hussaini, M. Y. (1986): On spectral multigrid methods for the time-dependent Navier-Stokes equations, Appl. Math. Comp., Vol. 19, pp. 359 - 372.MathSciNetMATHGoogle Scholar
  18. Zang, T. A.; and Hussaini, M. Y. (1987): Numerical simulation of nonlinear interactions in channel and boundary-layer transition, in Nonlinear Wave Interactions in Fluids - AMDVol. 87, R. W. Miksad, T. R. Akylas and T. Herbert, eds., ASME, New York, pp. 131 - 145.Google Scholar
  19. Zang, T. A.; and Krist, S. E. (1989): Numerical experiments on stability and transition in planeGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1989

Authors and Affiliations

  • Thomas A. Zang
    • 1
  • Steven E. Krist
    • 1
  • M. Yousuff Hussaini
    • 2
  1. 1.NASA Langley Research CenterUSA
  2. 2.NASA Langley Research CenterI.C.A.S.E.USA

Personalised recommendations