Advertisement

Supercomputing and the Finite Element Approximation of the Navier-Stokes Equations for Incompressible Viscous Fluids

  • R. Glowinski
Conference paper
Part of the Lecture Notes in Engineering book series (LNENG, volume 43)

Abstract

We discuss in this paper the numerical simulation of unsteady incompressible flows modeled by the Navier-Stokes equations, concentrating most particularly to flows at Reynold number of the order of 103 to 104. The numerical methodology described here is of modular type and well suited to super computers; it is based on time discretization by operator splitting, and space discretization by low order finite element approximations, leading to highly sparse matrices. The Stokes subproblems originating from the splitting are treated by an efficient Stokes solver, particularly efficient for flow at high Reynold numbers; the nonlinear subproblems associated to the advection are solved by a least squares/preconditioned conjugate gradient method. The methodology discussed here is then applied to the simulation of jets in a cavity, using a CRAY X-MP supercomputer. Various visualizations of the numerical results are presented, in order to show the vortex dynamics taking place in the cavity.

Keywords

Computational Fluid Dynamics Conjugate Gradient Method Finite Element Approximation Conjugate Gradient Algorithm Operator Splitting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. M. MURMAN, S.S. ABARBANEL eds. Progress and Supercomputing in Computational Fluid Dynamics, Birkhauser, Boston, (1985).MATHGoogle Scholar
  2. [2]
    R. GLOWINSKI, Viscous flow simulations by finite element methods and related numerical techniques, in Progress and Supercomputing in Computational Fluid Dynamics, E. M. Murman, S. S. Abarbanel eds., Birkhauser, Boston, (1985), pp. 173–210.CrossRefGoogle Scholar
  3. [3]
    M. O. BRISTEAU, R. GLOWINSKI, J. PERIAUX, Numerical Methods for the NavierStokes Equations, Computer Physics Reports 6, (1987), p.p. 73–187.CrossRefADSGoogle Scholar
  4. [4]
    R. GLOWINSKI, Numerical Methods for Nonlinear Variational Problems, Springer, New York, (1984).MATHGoogle Scholar
  5. [5]
    F. THOMASSET, Implementation of Finite Element Methods for Navier-Stokes Equations, Springer, New York, (1981).MATHGoogle Scholar
  6. [6]
    R. PEYRET, T.D. TAYLOR, Computational Methods for Fluid Flow, Springer, New York, (1982).Google Scholar
  7. [7]
    O. A. LADYSENSKAYA, The Mathematical Theory of Viscous Incompressible Flows, Gordon and Breach, New York, (1969).Google Scholar
  8. [8]
    J. L. LIONS, Quelques Methodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris (1969).MATHGoogle Scholar
  9. [9]
    R. TEMAM, Navier-Stokes Equations, North-Holland, Amsterdam, (1977).MATHGoogle Scholar
  10. [10]
    L. TARTAR, Topics in Nonlinear Analysis, Université Paris-Sud, Département de Mathématiques, Paris, (1978).Google Scholar
  11. [11]
    V. GIRAULT, P.A. RAVIART, Finite Element Methods for Navier-Stokes Equations, Springer, Berlin, (1986).CrossRefMATHGoogle Scholar
  12. [12]
    M. O. BRISTEAU, R. GLOWINSKI, B. MANTEL, J. PERIAUX, P. PERRIER, Numerical Methods for Incompressible and Compressible Navier-Stokes Problems, in Finite Elements in Fluids, 6, R. II. Gallagher, G. Carey, J. T. Oden, O. C. Zienkiewicz eds., J. Wiley, Chichester, (1985), pp. 1–40.Google Scholar
  13. [13]
    R. GLOWINSKI, Splitting Methods for the Numerical Solution of the Incompressible NavierStokes Equations, in Vistas in Applied Mathematics, A. V. Balakrishran, A. A. Doronitsyn, J. L. Lions eds., Optimization Software, New York, (1986), pp. 57–95.Google Scholar
  14. [14]
    E. DEAN, R. GLOWINSKI, C. H. LI, Application of Operator Splitting Methods to the Numerical Solution of Nonlinear Problems in Continuum Mechanics and Physics, in Mathematics Applied to Science, J. Goldstein, S. Rosencrans, G. Sod eds., Academic Press, Boston, (1988), pp. 13–64.Google Scholar
  15. [15]
    E. DEAN, R. GLOWINSKI, C. H. LI, Numerical solution of the parabolic problems in high dimensions, in Transactions of the Fifth Army Conference on Applied Mathematics and Computing, ARO Report 88–1, pp. 207–285.Google Scholar
  16. [16]
    G. I. MARCHUK, Methods of Numerical Mathematics, Springer, New York, (1975).MATHGoogle Scholar
  17. [17]
    R. GLOWINSKI, H. B. KELLER, L. REINHART, Continuation — Conjugate Gradient Methods for the Least Squares Solution of Nonlinear Boundary Value Problems, SIAM J. Sci. Stat. Comput. 6, (1985), 793.CrossRefMathSciNetMATHGoogle Scholar
  18. [18]
    J. NECAS, Les Méthodes Directes en Théorie des Equations Elliptiques, Masson, Paris, (1967).MATHGoogle Scholar
  19. [19]
    R. A. ADAMS, Sobolev Spaces, Academic Press, New York, (1971).Google Scholar
  20. [20]
    R. GLOWINSKI, P. LE TALLEC, Augmented Lagrangian Methods for the Solution of Variational Problems, MRC Report 2965, Mathematics Research Center, University of Wisconsin, Madison, (1987).Google Scholar
  21. [21]
    P. HOOD, C. TAYLOR, A Numerical Solution of the Navier-Stokes Equations Using the Finite Element Technique, Computers and Fluids, 1, (1973), pp. 73–100.CrossRefMathSciNetMATHGoogle Scholar
  22. [22]
    K. MORGAN, J. PERIAUX, F. TIIOMASSET eds., Numerical Analysis of Laminar Flow over a Step, Vieweg-Verlag, Braunschwerg, Wiesbaden, (1984).Google Scholar
  23. [23]
    J. HEYWOOD, R. RANNACIIER, Finite Element Approximation of the Nonstationary Navier-Stokes Problem (I): Regularity of Solutions and Second-Order Error Estimates for Spatial Discretization, SIAM J. Numer Anal. 19, (1982), 275.CrossRefADSMathSciNetMATHGoogle Scholar
  24. [24]
    J. IIEYWOOD, R. RANNACIIER, Finite Element Approximation of the Nonstationary Navier-Stokes Problem (II): Stability of solutions and error estimates uniform in time, SIAM J. Numer. Anal 23, (1986), 750.CrossRefGoogle Scholar
  25. [25]
    D. N. ARNOLD, F. BREZZI, M. FORTIN, A stable finite element for the Stokes equations, Calcolo 21, (1984), 337.CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1989

Authors and Affiliations

  • R. Glowinski
    • 1
    • 2
  1. 1.Department of Mathematics 4800 CalhounUniversity of HoustonHoustonUSA
  2. 2.INRIALe ChesnayFrance

Personalised recommendations