Skip to main content

RNA Structure

  • Chapter

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 3))

Abstract

Considering the chemical similarity between DNA and RNA, one can only wonder at the different functions RNA performs. This is certainly due to its ability to adopt complex tertiary structures. Apart from a genomic role in some viruses, RNA is mostly involved in the machinery that expresses the genetic information from DNA to proteins. Important actors are messenger RNAs and transfer RNAs which play key roles during thé translation process. Ribosomal RNAs are major components of the protein synthesis machinery and their structure is actively studied (Moore 1988). The recent discovery that these RNAs are themselves formed by an RNA-mediated processing of their primary transcripts added a new dimension to these molecules. They can be more than substrates, e.g., co-factors or templates (Mowry and Steitz 1987) and can act as catalysts (Cech 1987). These new properties of RNA reshaped the field of evolution (Weiner and Maizels 1987). It is also probable that more functions have yet to be discovered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amott S, Hukins DWL, Dover SD, Fuller W, Hodgson AR (1973) Structures of synthetic polynucleotides in the A-RNA and A’-RNA conformation: X-Ray diffraction analyses of the molecular conformations of polyadenylic acid-polyuridylic acid and polyinosinic acid-polycytidylic acid. J Mol Biol 81: 107–122

    Article  Google Scholar 

  • Calladine CR (1982) Mechanics of sequence-dependent stacking in B-DNA. J Mol Biol 161: 343–352

    Article  PubMed  CAS  Google Scholar 

  • Cech TR (1987) The chemistry of self-splicing RNA and RNA enzymes. Science 236: 1532–1539

    Article  PubMed  CAS  Google Scholar 

  • Crothers DM, Cole PE (1978) Conformational changes in tRNA. In: Transfer RNA, Altman S (ed), MTT Press Cambridge, MA, pp 196–247

    Google Scholar 

  • De Bruijn, Klug A (1983) A model for the tertiary structure of mammalian mitochondrial tRNAs lacking the entire dihydrouridine loop and stem. EMBO J 8: 1309–1321

    Google Scholar 

  • Dock AC, Lorber B, Moras D, Pixa G, Thierry JC, Giegé R (1984) Crystallization of tRNAs. Biochimie 66: 179–201

    Article  PubMed  CAS  Google Scholar 

  • Dock-Bregeon AC, Moras D (1987) Conformational changes and dynamics of tRNAs: evidences from hydrolysis patterns. Cold Spring Harbor Symp Quant Biol, vol LII: 113–121

    Google Scholar 

  • Dock-Bregeon AC, Chevrier B, Podjamy A, Moras D, de Bear JS, Gough GR, Gilham PT, Johnson JE (1988) High Resolution structure of the RNA Duplex [Up(UpAp)6]2, Nature 335: 375–378

    CAS  Google Scholar 

  • Dumas P (1986) Thesis, Universite Louis Pasteur, Strasbourg

    Google Scholar 

  • Dumas P, Moras D, Florentz C, Giege R, Verlaan P, Van Belkum A, Pleij CWA (1987) 3D graphics modelling of the tRNA-like 3’end of TMV RNA: structural and functional implications. J Biomol Struct Dyn 4: 707–727

    Google Scholar 

  • Ehresmann C, Baudin P, Mougel M, Romby P, Ebel JP, Ehresmann B (1987) Probing the structure of RNAs in solution. Nucleic Acids Res 15: 9109–9128

    Article  PubMed  CAS  Google Scholar 

  • Fratini AV, Kopka ML, Drew HR, Dickerson RE (1982) Reversible bending and helix geometry in a B DNA dodecamer CGCGATTB`CGCG. J Biol Chem 257: 14686–14707

    PubMed  CAS  Google Scholar 

  • Haasnoot CAG, Hilbers CW, van der Marel GA, van Boom JH, Singh UC, Pattabiraman N, Colman PA (1986) On loopfolding in nucleic acid hairpin-type structures. J Biomol Struct Dyn 3: 843–857

    PubMed  CAS  Google Scholar 

  • Hall K, Cruz P, Tinocco I Jr, Jovin TM, van de Sande JH (1984) Z-RNA: A left handed RNA double helix. Nature 311: 584–586

    Article  PubMed  CAS  Google Scholar 

  • Hardin CC, Horowitz J (1987) Mobilty of individual 5-fluorouridine residues in 5-fluoracil-substituted Escherichia coli Valine tRNA: A t F NMR relaxation study. J Mol Biol 197: 555–569

    Article  PubMed  CAS  Google Scholar 

  • Hingerty B, Brown RS, Jack A (1978) Further refinement of yeast tRNAPhO. J Mol Biol 124: 523–534

    Article  PubMed  CAS  Google Scholar 

  • Holbrook SR, Sussman JL, Warrant RW Curch GM, Kim SH (1977) RNA-ligand interactions: (1) magnesium binding sites in yeast RNAP`. Nucleic Acids Res 4: 2811–2820

    Article  PubMed  CAS  Google Scholar 

  • Holbrook SR, Sussman JL, Warrant RW, Kim SH (1978) Crystal structure of yeast tRNAP“. J Mol Biol 123: 631–660

    Article  PubMed  CAS  Google Scholar 

  • Jack A, Ladner JE, Klug A (1976) Crystallographic refinement of yeast phenylalanine tRNA at 2.5 A resolution. J Mol Biol 108: 619–649

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Cech TR (1987) Three dimensional model of the active site of the self-splicing rRNA precursor of Tetrahymena. Proc Natl Acad Sci USA 84: 8788–8792

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Sussmann JL, Suddath FL, Quigley GJ, Mc Pherson A, Wang AHJ, Seeman NC, Rich A (1974) The general structure of tRNA molecules. Proc Nati Acad Sci USA 71: 4970–4974

    Article  CAS  Google Scholar 

  • Klug A, Ladner J, Robertus JD (1974) The structural geometry of coordinated base changes in tRNA. J Mol Biol 89: 511–516

    Article  PubMed  CAS  Google Scholar 

  • Lavery R, Pullman B (1981) The molecular electrostatic potential and steric accessibility of A-DNA. Nucleic Acids Res 9: 4677–4688

    Article  PubMed  CAS  Google Scholar 

  • Lee CH, Tinocco I Jr (1980) Conformation studies of 13 trinucleotides diphosphates by 360 MHz NMR spectroscopy: a bulged base conformation. Biophys Chem 11: 283–294

    Article  PubMed  CAS  Google Scholar 

  • Li ZQ, Giegé R, Jacrot B, Oberthür R, Thierry JC, Zaccaï G (1983) Structure of phenylalanine-accepting transfer RNA and of its environment in aqueous solvents with different salts. Biochemistry 22: 4380–4388

    Article  PubMed  CAS  Google Scholar 

  • Moore PB (1988) The ribosome returns. Nature 331: 223–227

    Article  PubMed  CAS  Google Scholar 

  • Moras D (1988) Crystal structures of tRNAs Nucleic Acids vol VII/1 Landolt and Bomstein ed. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Moras D, Comarmond MB, Fischer J, Thierry JC, Ebel JP, Giegé R (1980) Crystal structure of tRNAAsP. Nature 288: 669–674

    Article  PubMed  CAS  Google Scholar 

  • Moras D, Dock AC, Dumas P, Westhof E, Romby P, Ebel JP, Giege R (1986) Anticodon-anticodon interactions induces conformational changes in tRNA: yeast tRNAA ’, a model for tRNA-mRNA recognition. Proc Natl Acad Sci USA 83: 932–936

    Article  PubMed  CAS  Google Scholar 

  • Mougel M, Eyermann F, Westhof E, Romby P, Expert°Bezancon A, Ebel JP, Ehresmann B, Ehresmann C (1987) Binding of E.coli ribosomal protein S8 to 16S RNA. J Mol Biol 198: 91–107

    CAS  Google Scholar 

  • Mowry KL, Steitz JA (1987) Identification of the human U7 snRNP as one of several factors involved in the 3’ end maturation of histone premessenger RNAs. Science 238: 1682–1687

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Fujii S, Urata H, Uesugi S, Ikehara M, Tonita K (1985) Crystal structure of a left-handed RNA tetramer r(C-br8G)2. Nucleic Acids Symp Ser 16: 29–41

    PubMed  CAS  Google Scholar 

  • Namba K, Stubbs G (1986) Structure of tobacco mosaïc virus at 3.6 A resolution: implications for assembly. Science 231: 1401–1407

    Article  PubMed  CAS  Google Scholar 

  • Patel D, Shapiro L, Hare D (1987) DNA and RNA: NMR studies of conformations and dynamics in solution. Q Rev Biophys 20: 35–112

    Google Scholar 

  • Pleij CWA, Van Belkum A, Rietveld K, Bosch L (1986) A new principle of RNA folding based on pseudoknotting. Nucleic Acids Res 13: 1717–1723

    Article  Google Scholar 

  • Puglisi JD, Wyatt JR, Tinocco I Jr (1988) A pseudo-knotted RNA oligonucleotide. Nature 331:283–286 Quigley GJ, Rich A (1976) Structural domains of transfer RNA molecules. Science 194: 796–806

    Google Scholar 

  • Rao SN, Kollman PA (1986) Conformations of the 8-methylated and unmethylated ribohexamer r(CGCGCG)2. J Am Chem Soc 108: 3048–3052

    Article  CAS  Google Scholar 

  • Riazance JH, Baase WA, Johnson WC Jr, Hall K, Cruz P, Tinocco I Jr (1985) Evidence of Z-form RNA by vacuum UV circular dichroism. Nucleic Acids Res 13: 4983–4989

    Article  PubMed  CAS  Google Scholar 

  • Robertus JD, Ladner JE, Finch JT, Rhodes D, Clark BFC, Klug A (1974) Structure of yeast tRNAPh` at 3 A resolution. Nature 250: 546–551

    Article  PubMed  CAS  Google Scholar 

  • Romby P, Westhof E, Moras D, Giegé R, Houssier C, Grosjean H (1986) Studies on anticodon-anticodon interactions: Hemiprotonation of cytosines induces self-pairing through the GCC anticodon of E.coli tRNA6’. J`Biomol Struct Dyn 4: 193–203

    PubMed  CAS  Google Scholar 

  • Rosenberg JM, Seeman NC, Day RO, Rich A (1976) RNA double helical fragment at atomic resolution: II. The crystal structure of sodium guanylyl-3’,5’ uridine nonahydrate. J Mol Biol 104: 145–167

    Article  PubMed  CAS  Google Scholar 

  • Ruff M, Cavarelli J, Mikol V, Lorber B, Mitschler M, Giege R, Thierry JC, Moras D (1988) A high resolution diffracting crystal form of the complex between yeast tRNAA’P and aspartyl-tRNA synthetase. J Mol Biol 201: 235–236

    Article  PubMed  CAS  Google Scholar 

  • Saenger W (1984) Principles of Nucleic Acid Structures. Springer, Berlin Heidelberg New York Tokyo Schevitz RW, Podjamy AD, Krishnamachari N, Hughes JJ, Sigler PB, Sussman JL (1979) Crystal structure of an eukaryotic initiator tRNA. Nature 278: 188–190

    Article  Google Scholar 

  • Schimmel PR, Redfield AG (1980) Transfer RNA in solution: Selected topics. Annu Rev Biophys Bioeng 9: 181–221

    Google Scholar 

  • Seeman NC, Rosenberg JM, Suddath FL, Kim JJP, Rich A (1976) RNA double helical fragment at atomic resolution: I. The crystal structure of sodium adenyl-3’, 5’ uridine hexahydrate. J Mol Biol 104: 109–144

    Article  PubMed  CAS  Google Scholar 

  • Stauffacher CV, Chen Z, Li Y, Kamer G, Schmidt J, Bomu W, Lomonossoff G, Schanks M, Johnson JE (1988) Partially ordered nucleic acids in spherical RNA virus (in preparation)

    Google Scholar 

  • Stout CD, Mizuno H, Rao ST, Swaminathan P, Rubin J, Brennan T, Sundaralingam M (1978) Crystal structure of yeast tRNAPb`: Structure determination, difference Fourier refinement, molecular conformation, metal and solvent binding. Acta Cryst B34: 1529–1544

    Google Scholar 

  • Stubbs G, Stauffacher CV (1981) Structure of RNA in tobacco mosaic virus. J Mol Biol 152:387–396 Sussman JL, Holbrook SR, Warrant RW, Kim SH (1978) Crystal structure of yeast phenylalanine tRNA. I. Crystallographic refinement. J Mol Biol 123: 607–630

    Google Scholar 

  • Teeter MM, Quigley GJ, Rich A (1980) Metal ions and tRNA. In: Spiro TG (ed) Nucleic Acid-Metal ion interactions. John Wiley 4: 145–177

    Google Scholar 

  • Tinocco I Jr, Davis PW, Hardin CC, Puglisi JD, Walker GT, Wyatt J (1987) RNA structure from A to Z. Cold Spring Harbor Symp Quant Biol LIE: 135–146

    Google Scholar 

  • Trulson MO, Puglisi JD, Cruz P, Tinocco I Jr, Mathies RA (1987) Raman spectroscopic studies of left handed forms of RNA. Biochemistry 26: 8624–8630

    Article  PubMed  CAS  Google Scholar 

  • Turner DH, Sugimoto N, Jaeger JA, Longfellow CE, Freier SM, Kierzek R (1987) Improved parameters for prediction of RNA structure. Cold Spring Harbor Symp Quant Biol. LII: 123–133

    Google Scholar 

  • Weiner AM, Maizels N (1987) tRNA-like structures tags the 3’ end of genomic RNA molecules for replication: implications for the origin of protein synthesis. Proc Natl Acad Sci USA 84: 7383–7387

    Google Scholar 

  • Westhof E (1987) Hydration of oligonucleotides in crystals. Int J Biol Macromol 9: 186–192

    Article  CAS  Google Scholar 

  • Westhof E (1988) Water: an integral part of nucleic acid structure. Annu Rev Biophys Chem 17: 125–144

    Article  CAS  Google Scholar 

  • Westhof E, Sundaralingam M (1986) Restrained refinement of the monoclinic form of yeast phenylalanine tRNA: Temperature factors and dynamics, coordinated waters and base-pair propeller twist angles. Biochemistry 25: 4868–4878

    Google Scholar 

  • Westhof E, Dumas P, Moras D (1983) Loop stereochemistry and dynamics in tRNA. J Biomol Struct Dyn 1: 337–355

    PubMed  CAS  Google Scholar 

  • Westhof E, Dumas P, Moras D (1985) Crystallographic refinement of yeast tRNA ’. J. Mol Biol 184: 119–145

    Article  PubMed  CAS  Google Scholar 

  • Westhof E, Dumas P, Moras D (1988a) Restrained refinement of two crystalline forms of yeast aspartic acid and phenylalanine transfer RNA crystals. Acta Cryst A44: 112–123

    Article  Google Scholar 

  • Westhof E, Dumas P, Moras D (1988b) Hydration of transfer RNA molecules: a crystallographic study. Biochimie 7: 145–165

    Article  Google Scholar 

  • Wickens MP, Dahlberg JE (1987) RNA-Protein interactions ( Meeting Report ). Cell 51: 339–342

    Google Scholar 

  • Woo NH, Roe BA, Rich A (1980) Three dimensional structure of E. coli initiator tRNAIM“. Nature 286: 346–351

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Delarue, M., Moras, D. (1989). RNA Structure. In: Eckstein, F., Lilley, D.M.J. (eds) Nucleic Acids and Molecular Biology. Nucleic Acids and Molecular Biology, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83709-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83709-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83711-1

  • Online ISBN: 978-3-642-83709-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics