Skip to main content

Part of the book series: Lecture Notes in Engineering ((LNENG,volume 42))

  • 193 Accesses

Abstract

After being able to determine the structural behaviour by means of finite methods, an important goal of engineering activities is to improve and to optimize technical designs, structural assemblies and structural components. The task of structural optimization is to support the engineer in searching for the best possible design alternatives of specific structures. The “best possible” or “optimal” structure is the structure which is highly corresponding to the designer’s desired concept and his objectives whilst at the same time meeting the functional, manufacturing and application demands. In comparison to the “Trial and Error”- method generally used in the engineering environment and based on an intuitive empirical approach the determination of optimal solutions by applying mathematical optimization procedures is more reliable and efficient if correctly applied. These procedures are increasingly entering industrial practice. In order to be able to apply the structural optimization methods to an optimization task, it must be possible to express both the design objectives and the constraints by way of mathematical functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eschenauer, H.A.: Rechnerische und experimentelle Untersuchungen zur Strukturoptimierung von Bauweisen. DFG-Forschungsbericht, Universität-GH Siegen 1985

    Google Scholar 

  2. Eschenauer, H.A.; Post, P.U.; BremickerM.: Einsatz der Optimierungsprozedur SAPOP zur Auslegung von Bauteilkomponenten. Bauingenieur 63 (1988)

    Google Scholar 

  3. Eschenauer,H.A.; Koski,J.; OsyczkaA.: Multicriterion Design Optimization. Berlin, Heidelberg, New York, London, Paris, Tokyo: Springer-Verlag (to appear 1989)

    Google Scholar 

  4. Bremicker,M.; Eschenauer,H.A.: Uber die Leistungsfähigkeit einiger MP-Algorithmen im Gestaltsoptimierungsprozeβ. ZAMM 69, 4/5 (1989) T358

    Google Scholar 

  5. Lootsma,F.A.; Ragsdell,K.M.: State-of-the-Art in Parallel Nonlinear Optimization. Parallel Computing 6 (1988) 133–155

    Article  MATH  MathSciNet  Google Scholar 

  6. Hörnlein, H.R.E.M.: Take-Off in Optimum Structural Design. Proc. of the NATO/NASA/ NSF/USAF Conf. on Computer Aided Optimal Design, Vol. 3, Troja/Portugal (1986) 176–199

    Google Scholar 

  7. Fleury,C.; Ramanathan,R.K.; Slama,M.; Schmit,L.A.: ACCESS Computer Program for the Synthesis of Large Structural Systems. In: Atrek, E. et al. : New Directions in Optimum Structural Design. Chichester: John Wiley & Sons (1984) 541–561

    Google Scholar 

  8. Bartholomew, P.; Morris, A.J.: STARS: A Software Package for Structural Optimization. Proc. Int. Symp. on Optimum Structural Design. University of Arizona/USA (1981)

    Google Scholar 

  9. Sobieszczanski-SobleskiJ.; Rogers,J.L.: A Programming System for Research and Applications in Structural Optimization In: Atrek, E. et. al.: New Directions in Optimum Structural Design. Chichester: John Wiley & Sons (1984) 563–585

    Google Scholar 

  10. Fleury, C.; Braibant, V.: Application of Structural Synthesis Techniques. Proc. of the NATO/ NASA/NSF/USAF Conf. on Computer Aided Optimal Design, Vol. 2, Troja/ Portugal (1986) 29–53

    Google Scholar 

  11. Haftka,R.T.; Prasad,B.: Programs for Analysis and Resizing of Complex Structures. Computers and Structures 10 (1979) 323–330

    Article  MATH  Google Scholar 

  12. Wilkinson,K. et al An Automated Procedure for Flutter and Strength Analysis and Optimization. Vol. 1 - Theory; Vol. 2 - Program User’s Manual AFFDL-TR-75-137, 1975

    Google Scholar 

  13. Kneppe,G.; Keppeler,D.; Krammer,H.: Optimale Auslegung komplexer Luft- und Raum- fahrtstrukturen mit Hilfe der Mathematischen Programmierung in Verbindung mit FE- Analysen. Vortragsmanuskript. XV. Int. Finite Element Kongress. Baden-Baden/Germany 1986

    Google Scholar 

  14. Bushnell,D.: PANDA2. - A Program for Minimum Weight Design of Stiffened, Composite, Locally Buckled Panels. Computers and Structures 25 (1987) 469–605

    Article  MATH  Google Scholar 

  15. Qian, L.X.: Structural Optimization Research in China. Proc. of the Int. Conf. on Finite Element Methods, Shanghai/China (1982) 16–24

    Google Scholar 

  16. Botkin,M.E.; Bennet,J.A.: Shape Optimization of Three-Dimensional Folded Plate Structures. AIAA Journal 23 (1984) 1804–1810

    Article  Google Scholar 

  17. Esplng, B.; Holm, D.: Structural Shape Optimization Using OASIS. In: Rozvany, G.I.N.; Karihaloo, B.L.: Structural Optimization. Proc. of the IUTAM Symposium. Melbourne/ Australia (1988) 93–101

    Google Scholar 

  18. Ledna, G.; Petiau, C.: Advances in Optimal Design with Composite Materials. Proc. of the NATO/NASA/NSF/USAF Conf. on Computer Aided Optimal Design, Vol. 3, Troja/Portugal (1988) 279–289

    Google Scholar 

  19. Anderson, M.S.: Practical Design of Shear and Compression Loaded Stiffened Panels. In: Rozvany, G.I.N.; Karihaloo, B.L.: Structural Optimization. Proc. of the IUTAM Symposium. Melbourne/Australia (1988) 1–9

    Google Scholar 

  20. Stadler,W. (ed.) Multicriteria Optimization in Engineering and in Sciences. New York, London: Plenum Press 1988

    MATH  Google Scholar 

  21. Eschenauer,H.A.: Multicriteria Optimization Techniques for Highly Accurate Focussing Systems. In: Stadler, W.: Multicriteria Optimization in Engineering and in Sciences. New York, London: Plenum Press (1988) 309–352

    Google Scholar 

  22. Eschenauer,H.A.: Multicriteria Optimization Procedures in Application on Structural Mechanics Systems. In: Jahn, I.; Krabs, W.: Recent Advances and Historical Development of Vector Optimization. Berlin, Heidelberg, New York: Springer-Verlag (1987) 345–376

    Google Scholar 

  23. Kneppe, G.: Direkte Lösungsstrategien zur Gestaltsoptimierung von Flächentragwerken. Dissertation. Universität-GH Siegen. VDI-Fortschrittbericht, Reihe 1, Nr. 135, Düsseldorf: VDI-Verlag 1986

    Google Scholar 

  24. Arora,J.S.: Govil,A.K.; An Efficient Method for Optimal Structural Design by Sub- Structuring. Computers and Structures 7 (1977) 507–515

    Article  Google Scholar 

  25. Sobieszczanski-Sobieski,J.S.; James,B.B.; Dovi,A.R.: Structural Optimization by Multilevel Decomposition. American Institute of Aeronautics and Astronautics 23, 1985, 1775–1782

    MATH  MathSciNet  Google Scholar 

  26. Barthelemy,J.-F.M.; Sobieszczanski-Sobìeski,J.S.: Optimum Design Sensitivity Derivatives of Objective Functions in Nonlinear Programming. AIAA Journal 6 (1983) 913–915

    Article  Google Scholar 

  27. Kirsch,U.: Multilevel Optimal Design of Reinforced Concrete Structures. In: Eschenauer, H.; Olhoff, N.: Optimization Methods in Structural Design. Mannheim: BI-Verlag (1983) 156–161

    Google Scholar 

  28. Haftka,R.T.: An Improved Computational Approach for Multilevel Optimum Design. Journal of Structural Mechanics 12(2) (1984) 245–261

    Article  MathSciNet  Google Scholar 

  29. Bremicker, M.: Dekompositionsstrategie in Anwendung auf Probleme der Gestaltsopti-mierung. Dissertation. Universität-GH Siegen,(to appear 1989)

    Google Scholar 

  30. Adelmann,H.M.; Haftka,R.T.: Sensitivity Analysis for Discrete Structural Systems - A Survey. NASA TM 86333, 1984

    Google Scholar 

  31. Haug,E.J.; Choi,K.K.; Komkov,V.: Design Sensitivity Analysis of Structural Systems. Orlando: Academic Press 1986

    MATH  Google Scholar 

  32. Choi, K.K.: Shape Design Sensitivity Analysis and Optimal Design of Stuctural Systems. Proc. of the NATO/NASA/NSF/USAF Conf. on Computer Aided Optimal Design, Vol. 2. Troja/Portugal (1986) 54–108

    Google Scholar 

  33. Braibant, V.: Shape Sensitivity by Finite Elements. Journal of Structural Mechanics 14(2) (1986) 209–228

    Article  MathSciNet  Google Scholar 

  34. Wang,W.-Y.; Sun,Y.; Gallagher,R.H.: Sensitivity Analysis in Shape Optimization of Continuum Structures. Computers & Structures 20 (1985) 855–867

    Article  MATH  Google Scholar 

  35. Arora,J.S.; G.; BaenzingerG.: Uses of Artificial Intelligence in Design Optimization. Computer Methods in Applied Mechanics and Engineering 54 (1986) 303–323

    Article  MATH  Google Scholar 

  36. Papalambros, P.Y.: Knowledge-Based Systems in Optimal Design. Proc. of the NATO/NASA/ NSF/USAF Conf. on Computer Aided Optimal Design, Vol. 3. Troja/Portugal (1986) 311–362

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin, Heidelberg

About this paper

Cite this paper

Eschenauer, H.A. (1989). Actual State of Structural Optimization. In: Eschenauer, H.A., Thierauf, G. (eds) Discretization Methods and Structural Optimization — Procedures and Applications. Lecture Notes in Engineering, vol 42. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83707-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83707-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50784-0

  • Online ISBN: 978-3-642-83707-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics