Relaxed Configurations and Elastic Range in Elasto-Plastic Models

  • Sanda Cleja-Tigoiu
  • Eugen Soós
Conference paper
Part of the Lecture Notes in Engineering book series (LNENG, volume 39)


We present an elasto-plastic rate-independent model of solid bodies, based on the existence of local, current, relaxed, isoclinic configurations (l.c.r.i.c). We consider that the model adequately describes the behaviour under moderately large deformation. We prove that the model represents a realization of the theory of materials with elastic range.


Plastic Deformation Elastic Deformation Slip System Symmetry Transformation Elastic Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lee, E.H. and Liu, D.T., IUTAM Symp. Vienna 1966, p. 117, H. Parkus, ed., Springer (1968).Google Scholar
  2. 2.
    Lee, E.H. and Liu, D.T., J. Appl. Mech. Trans. ASME (Ser. E), 36, 1 (1969).CrossRefMATHGoogle Scholar
  3. 3.
    Teodosiu, C., Proe. Conf. Fund. Aspects of Disloc. Th., Washington 1969, vol. 2, p. 837, J.A. Simmons, ed., Nat. Bur. St. Spec. Publ. (1970).Google Scholar
  4. 4.
    Kröner, E. and Teodosiu, C., Proc. Int. Symp. Found. of Plasticity, Warsaw 1972, vol. 2, p. 45, A. Sawczuk ed., Amsterdam (1974).Google Scholar
  5. 5.
    Sidoroff, F. and Teodosiu, C., Int. J. Engng. Sci., 14, 713 (1976).CrossRefMATHGoogle Scholar
  6. 6.
    Sidoroff, F., Plasticité et viscoplasticité, seminaire 1972, D. Radenkovic, J. Salencon ed., p. 135, McGraw-Hill (1974).Google Scholar
  7. 7.
    Mandel, J., Plasticité et viscoplasticité, Udine 1971, Springer (1972).Google Scholar
  8. 8.
    Kratochvil, J., J. Appl. Phys., 42, 1104 (1971).CrossRefGoogle Scholar
  9. 9.
    Kratochvil, J., Acta Mechanica, 16. 307 (1972).Google Scholar
  10. 10.
    Halphen, B., Int. J. Solids Structures, 11, 917 (1975).CrossRefMathSciNetGoogle Scholar
  11. 11.
    Noll, W., Arch. Rat. Mech. Anal., 27, 1, (1967).CrossRefMathSciNetGoogle Scholar
  12. 12.
    Soós, E., St. Cere. Mec. Apl., 42, 445 (1983).Google Scholar
  13. 13.
    Sanda Cleja-Tigoiu, Preprint series in mathematics, INCHEST, Bucharest, no. 62 (1983).Google Scholar
  14. 14.
    Sanda Cleja-Tigoiu, Preprint series in mathematics, INCREST, Bucharest, no. 63 (1984).Google Scholar
  15. 15.
    Nemat-Nasser, S., Int. J. Solids Structures, 18, 857 (1982).CrossRefMATHGoogle Scholar
  16. 16.
    Loret, B., Mechanics of Materials, 2, 287 (1983).CrossRefGoogle Scholar
  17. 17.
    Dafalias, Y., Int. Symp. on Current Trends and Results in Plasticity, CISM, Udine 1983, in Plasticity Today, p. 135, A. Sawczuk, G. Bianchi ed., Elsevier U.K. (1985).Google Scholar
  18. 18.
    Pipkin, A.C. and Rivlin, R.S., Z.A.M.P., 16, 313 (1965).CrossRefMathSciNetGoogle Scholar
  19. 19.
    Owen, D.R., Arch. Rat. Me eh. Anal. 37, 85 (1970).CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Owen, D.R., Quart. Appl. Math., 50, 355 (1974).MathSciNetGoogle Scholar
  21. 21.
    Šilhavy, M., Arch. Rat. Mech. Anal., 63, 169 (1977).CrossRefMATHGoogle Scholar
  22. 22.
    Lucchesi, M. and Podio-Guidugli, P., An application oriented theory of materials with elastic range, Preprint (1986).Google Scholar
  23. 23.
    Lee, E.H. and Germain, P., Problems of plasticity, Int. Symp. on Foundations of Plasticity, Warsaw, 1972 (Ed. A. Sawczuk), p. 413, 1974.Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1989

Authors and Affiliations

  • Sanda Cleja-Tigoiu
    • 1
    • 2
  • Eugen Soós
    • 1
    • 2
  1. 1.Faculty of MathematicsUniversity of BucharestBucharestRomania
  2. 2.Department of MathematicsNational Institute for Scientifical and Technical CreationBucharestRomania

Personalised recommendations