Hybrid Finite Element/Boundary Element Analysis of Electromagnetic Fields

  • J. D’Angelo
Part of the Topics in Boundary Element Research book series (TBOU, volume 6)

Abstract

Both differential and integral methods have been extensively used for the numerical analysis of electromagnetic fields [1–8]. There are many reasons why one would choose one method over another. These reasons vary from the availability of computer codes to the specific requirements of an analysis.

Keywords

Permeability Microwave Radar Assure Expense 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chari, M.V.K., Silvester P., (eds.), Finite Elements in Electrical and Magnetic Field Problems, New York: Wiley, 1980Google Scholar
  2. 2.
    Chari, M.V.K., Silvester, P., “Finite element analysis of magnetically saturated DC Machines,” IEEE Trans. Power Appl. Syst., Vol. PAS-90, Sept. 1971Google Scholar
  3. 3.
    Silvester, P., “A general high-order finite element waveguide analysis program,” IEEE Trans. of Microwave Theory and Techniques, Vol. MTT-17, No. 4, April 1969Google Scholar
  4. 4.
    Csendes, Z.J., Silvester, P., “Numerical solution of dielectric loaded waveguides I — finite-element analysis,” IEEE Trans. of Microwave Theory and Techniques, Vol. MTT-18, No. 12, Dec. 1970Google Scholar
  5. 5.
    Harrington, R.F., Field Computation by Moment Methods, Macmillan, 1968Google Scholar
  6. 6.
    Richmond, J.H., “Digital computer solutions of the rigorous equations for scattering problems,” Proc. IEEE, Vol. 53, Aug. 1965Google Scholar
  7. 7.
    Mei, K.K., “On the integral equations of thin wire antennas,” IEEE Trans. on Antennas and Propagation,“ Vol. AP-13, May 1965Google Scholar
  8. 8.
    Simkin, Trowbridge, C.W., “Application of integral equation methods for the numerical solution of magnetostatic and eddy current problems,” Rutherford Labs. Rep. RL-76–041Google Scholar
  9. 9.
    Taflov, A., Brodwin, M.E., “Numerical solution of steady-state EM scattering problems using time-dependent Maxwell’s equations,” IEEE Trans. of Microwave Theory and Techniques, Vol. MTT-23, Aug. 1975Google Scholar
  10. 10.
    Kunz, K.S., Hudson, H.G., “Experimental validation of time-domain three-dimensional finite difference techniques for predicting interior coupling responses”, IEEE Trans. EMC, Feb. 1986Google Scholar
  11. 11.
    Harrington, R.F., “Matrix methods for field problems”, Proc. of IEEE, Vol. 55, No. 2, Feb. 1967Google Scholar
  12. 12.
    Richmond, J.H., “Scattering by a dielectric cylinder of arbitrary cross section,” IEEE Trans. on Antennas and Propagation,“ Vol. AP-13, May 1965Google Scholar
  13. 13.
    Mei, K.K., Van Bladel, J.G., “Scattering by perfectly conducting rectangular cylinders,” IEEE Trans. on Antennas and Propagation,“ Vol. AP-11, Mar, 1963Google Scholar
  14. 14.
    Silvester, P., Chari, M.V.K., “Finite element solution of saturable magnetic field problems, IEEE Trans. Power App. Syst., Vol. PAS-89, No. 7, Sept. 1970Google Scholar
  15. 15.
    IBM Journal of Research and Development, Vol. 25, No. 4, 1981Google Scholar
  16. 16.
    Engl, W.L., Dirks, H.K., Meinerzhagen, B., “Device modeling,” Proc. of IEEE, Vol. 71, No. 1, Jan. 1983Google Scholar
  17. 17.
    Fichtner, Rose, D.J., Bank, R.E., Semiconductor device simulation, IEEE Trans. Electronic Devices, Vol. ED-30, No. 9, Sept. 1983Google Scholar
  18. 18.
    Engl, W.L., Dirks, H.K., Meinerzhagen, B., “Device modeling,” Proc. of IEEE, Vol. 71, No. 1, Jan. 1983Google Scholar
  19. 19.
    Barnes, J.J., Lomax, R.J., “Finite element methods in semi-conductor device simulation,” IEEE Trans. on Electron. Devices, ED-24, Aug. 1977Google Scholar
  20. 20.
    Ma, X., Wexler, A., “BEM calculation for magnetic shielding with steel sheets”, IEEE Trans. on Magnetics, Vol-21, No. 6, Nov. 1985Google Scholar
  21. 21.
    Zienkiewicz, O.C., Kelly, D.W., Bettess, P., “The coupling of the finite element method and boundary solution procedures,” Int. Journ. for Numerical Methods in Engineering, Vol. 11, 1977Google Scholar
  22. 22.
    McDonald, B.H., Wexler, A., “Finite-element solution of unbounded field problems,” IEEE Trans. of Microwave Theory and Techniques, Vol. MTT-20, No. 12, Dec. 1972Google Scholar
  23. 23.
    Salon, S.J., Schneider, J.M., “A hybrid finite element — boundary integral formulation of Poisson’s equation,” IEEE Trans. on Magnetics, Vol. Mag-16, No. 5, Sept. 1980Google Scholar
  24. 24.
    Lynch, D.R., Paulsen, K.D., “Hybrid element method for unbounded electromagnetic problems in hyperthermia,” Int. Journ. for Numerical Methods in Engineering, Vol. 23, 1986Google Scholar
  25. 25.
    Kardestunces (ed.) Finite Element Handbook, McGraw-Hill, 1987Google Scholar
  26. 26.
    Coulomb, J.L., Meunier, G., Sabonnadiere, J.G., “Energy methods for the evaluation of global quantities and integral parameters in a finite elements analysis of electromagnetic devices,” IEEE Trans. on Magnetics, Vol. MAG-21, No. 5, 1985Google Scholar
  27. 27.
    Chari, M.V.K., Silvester, P., (ed.) Finite Elements in Electrical and Magnetic Field Problems, Chap. 9, BH McDonald, A Wexler, New York: Wiley, 1980Google Scholar
  28. 28.
    Jin, J.M., Liepa, V.V., “Application of hybrid finite element method to electromagnetic scattering from coated cylinders,” Draft copyGoogle Scholar
  29. 29.
    Stratton, J.A., Electromagnetic Theory, McGraw-Hill, 1941Google Scholar
  30. 30.
    D’Angelo, J., Povinelli, M.J., Palmo, M.A., `Hybrid Finite Element/Boundary Element Analysis of a Stripline Notch Array, ’ 1988 IEEE AP-S International Symposium Reprints, Vol. 3, pp. 1126–1129, 1988CrossRefGoogle Scholar
  31. 31.
    Knott, E.F., Langseth, K.B., “Performance degradation of Jaumann absorber due to Curvature,” IEEE Trans. on Antennas and Propagation,“ Vol. AP-28, Jan. 1980Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1989

Authors and Affiliations

  • J. D’Angelo

There are no affiliations available

Personalised recommendations