Advertisement

Design of Adaptive and Nonlinear Analog CMOS Circuits: Building Block Approach

  • Rolf Unbehauen
  • Andrzej Cichocki
Part of the Communications and Control Engineering Series book series (CCE)

Abstract

The original motivation for the development of analog MOS circuits was the desire to realize fully integrated linear filters. At present, however, the majority of signal processor systems also contain other functional building blocks apart from linear filters such as comparators, Schmitt triggers, rectifiers, peak detectors, modulators, multipliers, oscillators etc.

Keywords

Input Voltage Schmitt Trigger Clock Phase Voltage Comparator Summing Amplifier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Sources for Further Reading

  1. 1.
    Martin, K.; Sedra, A.S.: Switched-capacitor building blocks for adaptive systems IEEE Trans. Circuits and Systems CAS-28 (1981) 576–584CrossRefGoogle Scholar
  2. 2.
    Hosticka, B.J.; Brockherde, W.; Kleine, U.; Schweer, R.: Design of nonlinear analog switched-capacitor circuits using building blocks. IEEE Trans. Circuits and Systems CAS-31 (1984) 354–368CrossRefGoogle Scholar
  3. 3.
    Hosticka, B.J.: Nonlinear analog MOS circuits (in Design of VLSI Circuits for Telecommunication, (Eds. Y. Tsividis, P. Antognetti ). Englewood Cliffs: Prentice-Hall (1985)Google Scholar
  4. 4.
    Gray, P.R.; Hodges, D.A.; Brodersen, R.W.: Analog MOS Integrated Circuits. New York: IEEE Press (1980)Google Scholar
  5. 5.
    Gregorian, R.; Martin, K.W.; Ternes G.C.: Switched-capacitor circuit design. Proceedings of IEEE 71 (1983) 941–966CrossRefGoogle Scholar
  6. 6.
    Hosticka, B.J.; Brockherde, W.; Kleine, U.; Zimmer, G.: Switched-capacitor FSK modulator and demodulator in CMOS technology. IEEE J Solid-State Circuits SC-19 (1984) 389–396Google Scholar
  7. 7.
    Martin, K.: Non-filtering applications of switched-capacitor circuits: a tutorial overview emphasizing technological constraints. IEEE Proc. Int. Symposium on Circuits and Systems, Montreal, Canada (1984) 162–165Google Scholar
  8. 8.
    Huertas, J.L.; Chua, L.O.; Rodriguez-Vazquez, A.B.; Rueda, A.: Nonlinear switched-capacitor networks: basic principles and piecewise-linear design. IEEE Trans. Circuits and Systems CAS-32 (1985) 305–319Google Scholar
  9. 9.
    Rodriguez-Vazquez, A.; Huertas, J.L.; Chua, L.O.: On a class of SC resistors and its application to the synthesis of non-linear driving-point and transfer-characteristic plots. Int. J. Circuit Theory and Applications 13 (1985) 309–326zbMATHCrossRefGoogle Scholar
  10. 10.
    Yee, Y.S.; Terman, L.M.; Heller, L.G.: A 1mV MOS comparator. IEEE J. Solid-State Circuits SC-13 (1978) 294–297Google Scholar
  11. 11.
    Allstot, D.J.: A precision variable-supply CMOS comparator. IEEE J. Solid-State Circuits SC-17 (1982) 1080–1087Google Scholar
  12. 12.
    Landsburg, G.F.: A charge-balancing monolithic A/D converter. IEEE J. Solid-State Circuits SC-12 (1977) 662–673Google Scholar
  13. 13.
    Vittoz, EA.: The design of high-performance analog circuits on digital CMOS chips. IEEE J. Solid-State Circuits SC-20 (1985) 657–665Google Scholar
  14. 14.
    Ng, W.T.; Salama, CA.T.: High-speed high-resolution CMOS voltage comparator. Electronics Letters 22 (1986) 338–339CrossRefGoogle Scholar
  15. 15.
    Allen, P.E.; Holberg, D.R.: CMOS Analog Circuit Design. New York: Holt, Rinehart and Winston (1987)Google Scholar
  16. 16.
    Antoniou, A.: Design of precision rectifiers using operational amplifiers. Proceedings of IEE 121 (1974) 1041–1044Google Scholar
  17. 17.
    Chari, MA.; Nagaraj, K.; Viswanathan, T.R.: Broad-band precision rectifier. IEEE Proc. Int. Symposium on Circuits and Systems, Philadelphia, USA (1987) 824–826Google Scholar
  18. 18.
    Kuraishi, Y.; Makabe, T.; Nakayama, K.: A single-chip NMOS analog front-end LSI for modems. IEEE J. Solid-State Circuits SC-17 (1982) 1039–1044Google Scholar
  19. 19.
    Nossek, JA.; Betzl, H.: Speech encoding by voiceband inversion using switched-capacitor techniques. Proc. European Conf. on Circuit Theory and Design ECCTD-83, Stuttgart, W. Germany (1983) 189–191Google Scholar
  20. 20.
    Vannerson, E.; Smith, K.C.: A low-distortion oscillator with fast amplitude stabilization. Int. J. Electronics 39 (1975) 465–472CrossRefGoogle Scholar
  21. 21.
    Filanovsky, I.M.; Piskarev, VA.; Stromsmoe, KA.: On the fast amplitude control in RC-oscillators. IEEE Proc. Int. Symposium on Circuits and Systems, Rome, Italy (1982) 819–822Google Scholar
  22. 22.
    Silva-Martinez, J.; Sanchez-Sinencio, E.: SC relaxation oscillators without excess phase jitter. Proc. Int. Symp. on Circuits and Systems, San Jose, USA (1986) 813–816Google Scholar
  23. 23.
    Sandler, H.M.; Sedra, A.S.: Sine-wave generation using a high-order lowpass switched-capacitor filter. Electronics Letters 22 (1986) 635–636CrossRefGoogle Scholar
  24. 24.
    Mikhael, W.B.; Tu, S.: Continuous and switched-capacitor multiphase oscillators. IEEE Trans. Circuits and Systems CAS-31 (1984) 280–293Google Scholar
  25. 25.
    Vittoz, EA.: Micropower switched-capacitor oscillator. IEEE J. Solid-State Circuits SC-14 (1979) 622–624Google Scholar
  26. 26.
    Martin, K.: A voltage-controlled switched-capacitor relaxation oscillator. IEEE J. Solid-State Circuits SC-16 (1981) 412–414Google Scholar
  27. 27.
    Fleischer, P.E.; Ganesan, A.; Laker, K.R.: A switched capacitor oscillator with precision amplitude control and guaranteed start-up. IEEE J. Solid-State Circuits SC-20 (1985) 641–647Google Scholar
  28. 28.
    Krummenacher, F.: A high-resolution capacitance-to-frequency converter. IEEE J. Solid-State Circuits SC-20 (1985) 666–670Google Scholar
  29. 29.
    Fattaruso, J.W.; Meyer, R.G.: Triangle-to-sine wave conversion with MOS technology. IEEE J. Solid-State Circuits SC-20 (1983) 623–631Google Scholar
  30. 30.
    Nathan, A.; McKay, IA.; Filanovsky, I.M.; Baltes, H.P.: Design of a CMOS oscillator with magnetic-field frequency modulation. IEEE J. Solid-State Circuits SC-22 (1987) 230–232Google Scholar
  31. 31.
    Allen, P.E.; Rafat, HA.; Bily, S.F.: A switched-capacitor waveform generator. IEEE Trans. Circuits and Systems CAS-32 (1985) 103–105Google Scholar
  32. 32.
    Abidi, AA.; Meyer, R.G.: Noise in relaxation oscillators. IEEE J Solid-State Circuits SC-18 (1983) 794–802Google Scholar
  33. 33.
    Cheng, W.W.; Larson, L.E.: A low-frequency CMOS triangle wave generator. IEEE J Solid-State Circuits SC-20 (1985) 649–652Google Scholar
  34. 34.
    Abidi, AA.: Linearization of voltage-controlled oscillators using switched-capacitor feedback. IEEE J. Solid-State Circuits SC-22 (1987) 494–496Google Scholar
  35. 35.
    Molnar, K.L.J.: Versatile exponential time-function generator using two sample-hold circuits. IEEE Trans. Instrumentation and Measurement IM-35 (1986) 46–51Google Scholar
  36. 36.
    Pookaiyaudom, S.; Jantarang, S.: Simulations for sinusoidal oscillators with random numbers and initial impulses IEEE Circuits and Devices Magazine (1986) 34–40Google Scholar
  37. 37.
    Koch, R.; Heise, B.; Eckbauer, F.; Engelhardt, E.; Fisher, JA.; Parzefall, F.: A 12-bit sigma-delta analog-to-digital converter with a 15-MHz clock rate. IEEE J Solid-State Circuits SC-21 (1986) 1003–1010Google Scholar
  38. 38.
    Sheingold, D.H. (ed.): Nonlinear circuits Handbook. Analog Devices, Inc.: Norwood, MA, (1976)Google Scholar
  39. 39.
    Gardner, F.M.: Phaselock Techniques. New York: John Wiley (1980)Google Scholar
  40. 40.
    Lindsey, W.C.; Chic, C.M. (eds.): Phase-Locked Loops. New York- IEEE Press (1986)Google Scholar
  41. 41.
    Smith, J.: Modern Communication Circuits. New York: McGraw-Hill (1986)Google Scholar
  42. 42.
    Viswanathan, T.R.; Martuza, S.; Syed, V.H.; Berry, J.; Staszel, M.: Switched-capacitor frequency control loop. IEEE J. Solid-State Circuits SC-17 (1982) 775–778Google Scholar
  43. 43.
    Mulawka, J.J.; Pakulak, A.: Switched-capacitor implementation of phase-locked loops. IEE Proc. G. Electronic Circuits and Systems 131 (1984) 221–225CrossRefGoogle Scholar
  44. 44.
    Joeng, D.K.; Borriello, G.; Hodges, DA.; Katz, R.H.: Design of PLL-based clock generation circuits. IEEE J. Solid-State Circuits SC-22 (1987) 255–261Google Scholar
  45. 45.
    Korn, GA.; Korn, T.M.: Electronic Analog and Hybrid Computers. New York: McGraw-Hill (1964)zbMATHGoogle Scholar
  46. 46.
    Stabrowski, M.M.: Modern numerical analysis of time-division multipliers. IEEE Trans. Instrumentation and Measurement IM-28 (1979) 74–78Google Scholar
  47. 47.
    Johnson, G.J.: Analysis of the modified Tomota-Sugiyama-Yamaguchi multiplier. IEEE Trans. Instrumentation and Measurement IM-33 (1984) 11–16Google Scholar
  48. 48.
    Enomoto, T.; Yasumoto, M.-A.: Integrated MOS four-quadrant analog multiplier using switched capacitor technology for analog signal processor IC’s. IEEE J. Solid-State Circuits SC-20 (1985) 852–859Google Scholar
  49. 49.
    Enomoto, T.; Yasumoto, M.-A.; Ishihara, T.; Watanabe, K.: Monolithic analog adaptive equalizer integrated circuit for wide-band digital communication networks. IEEE J Solid-State Circuits SC-17 (1982) 1045–1054Google Scholar
  50. 50.
    Cichocki, A.; Unbehauen, R.: A novel switched-capacitor four-quadrant analog multiplier-divider and some of its applications. IEEE Trans. Instrumentation and Measurement IM-35 (1986) 156–162Google Scholar
  51. 51.
    Brodarac, D.; Herbst, D.; Hosticka, Bi.; Hoefflinger, B.: Novel sampled-data MOS multiplier. Electronics Letters 18 (1982) 229–230Google Scholar
  52. 52.
    Yamakawa, T.; Ueno, F.: Applications of first-quadrant analog multiplier/divider to an RMS dc converter. Trans. IECE of Japan E 65 (1982) 588–589Google Scholar
  53. 53.
    Watanabe, K.; Ternes, G.C.: A switched-capacitor multiplier/divider with digital and analog outputs. IEEE Trans. Circuits and Systems CAS-31 (1984) 796–800Google Scholar
  54. 54.
    Dekker, L.: Multiplying and integrating in a hybrid way. Ann. Assoc. Int. Calcul. Anal. 7 (1965) 186–189Google Scholar
  55. 55.
    Bekey, GA.: Generalized integration on the analog computer. IRE Trans. Electronic Computers EC-8 (1959) 210–217Google Scholar
  56. 56.
    Paul, R.JA.; Gatland, H.B.: Design and some applications of a generalised integrator. Proceedings of IEE 114 (1967) 1193–1205Google Scholar
  57. 57.
    Ahmad, A.S.; Kadhom, AA.: Incremental generalized integrator. Computer-Aided Design 18 (1986) 424–430CrossRefGoogle Scholar
  58. 58.
    Cichocki, A.; Unbehauen, R.: Novel switched-capacitor generalised integrator. Electronics Letters 21 (1985) 158–159CrossRefGoogle Scholar
  59. 59.
    Cichocki, A.; Unbehauen, R.: Design of precision switched-capacitor generalised integrators and their applications to the synthesis of nonlinear networks. IEE Proc., Pt.G, 132 (1985) 225–236Google Scholar
  60. 60.
    Cichocki, A.; Unbehauen, R.: MOS SC microsystem for generating of trigonometrical functions and their inverses. Electronics Letters 22 (1986) 1056–1057CrossRefGoogle Scholar
  61. 61.
    Unbehauen, R.; Cichocki, A.: Ein Beitrag zur Synthese von SC-Netzwerken zur linearen and nichtlinearen Signalverarbeitung. ntz-Archiv 8 (1986) 271–285Google Scholar
  62. 62.
    Candy, J.C.: A use of double integration in sigma delta modulation. IEEE Trans. on Communications COM-33 (1985) 249–258Google Scholar
  63. 63.
    Hauser, M.W.; Brodersen, R.W.: Circuit and technology considerations for MOS delta sigma A/D converters. IEEE Proc. Int. Symposium Circuits and Systems, San Jose, USA (1986) 1310–1315Google Scholar
  64. 64.
    Gray, R.M.: Oversampled sigma-delta modulation. IEEE Trans. on Communications COM35 (1987) 481–489zbMATHCrossRefGoogle Scholar
  65. 65.
    Tan, K.S.; Gray, P.R.: Fully integrated analog filters using bipolar-JFET technology. IEEE J. Solid-State Circuits SC-13 (1978) 814–821CrossRefGoogle Scholar
  66. 66.
    Khorramabadi, H.; Gray, P.R.: High-frequency CMOS continuous-time filters. IEEE J. Solid-State Circuits SC-19 (1984) 939–948CrossRefGoogle Scholar
  67. 67.
    Kellner, W.: A continuous-time analog filter using MOS technology. Frequenz 35 (1981) 340–343CrossRefGoogle Scholar
  68. 68.
    Tsividis, Y.; Banu, M.; Khoury, J.: Continuous-time MOSFET-C filters in VLSI. IEEE J. Solid-State Circuits SC-21 (1986) 15–30Google Scholar
  69. 69.
    Banu, M.; Tsividis, Y.: Fully integrated active RC filters in MOS technology. IEEE J. Solid-State Circuits SC-18 (1986) 644–651Google Scholar
  70. 70.
    Banu, M.; Tsividis, Y.: An elliptic continuous-time CMOS filter with on chip automatic tuning. IEEE J. Solid-State Circuits SC-20 (1985) 1114–1121Google Scholar
  71. 71.
    Banu, M.; Tsividis, Y.: Detailed analysis of nonidealities in MOS fully integrated active RC filters based on balanced networks. IEE Proc. G. Electronic Circuits and Systems 131 (1984) 190–196CrossRefGoogle Scholar
  72. 72.
    Banu, M.; Tsividis, Y.: Floating voltage-controlled resistors in CMOS technology. Electronics Letters 18 (1982) 678–679CrossRefGoogle Scholar
  73. 73.
    Pennock, J.L.: CMOS triode transconductor for continuous-time active integrated filters. Electronics Letters 21 (1985) 817–818CrossRefGoogle Scholar
  74. 74.
    Tsividis, Y.; Czarnul, Z.; Fang, S.C.: MOS transconductors and integrators with high linearity. Electronics Letters 22 (1986) 245–246 Errata ibid. 22, 619Google Scholar
  75. 75.
    Czarnul, Z.; Tsividis, Y.: MOS tunable transconductor. Electronics Letters 22 (1986) 721–722CrossRefGoogle Scholar
  76. 76.
    Czarnul, Z.; Tsividis, Y.: Independent tuning of quality factor and unity-gain frequency in a transconductance-capacitance integrator. Electronics Letters 22 (1986) 1026–1027CrossRefGoogle Scholar
  77. 77.
    Nagaraj, K.: New CMOS floating voltage-controlled resistor. Electronics Letters 22 (1986) 667–668CrossRefGoogle Scholar
  78. 78.
    Czarnul, Z.: Modification of Banu-Tsividis continuous-time integrator structure. IEEE Trans. Circuits and Systems CAS-33 (1986) 714–716CrossRefGoogle Scholar
  79. 79.
    Czarnul, Z.: Novel MOS resistive circuit for synthesis of fully integrated continuous-time filters. IEEE Trans. Circuits and Systems CAS-33 (1986) 718–721CrossRefGoogle Scholar
  80. 80.
    Czarnul, Z.: Performance comparison of integrated continuous-time integrators containing matched MOS transistors. IEE Proc. G. Electronic Circuits and Systems 133 (1986) 203–208CrossRefGoogle Scholar
  81. 81.
    Ismail, M.: New fully-integrated MOSFET-capacitor active filters. IEEE Proc. Int. Symposium on Circuits and Systems, Kyoto, Japan (1985) 1435–1438Google Scholar
  82. 82.
    Ismail, M.: A new MOSFET-capacitor integrator. IEEE Trans. Circuits and Systems CAS-32 (1985) 1194–1196Google Scholar
  83. 83.
    Ismail, M.; Rubin, D.: Improved circuits for the realization of MOSFET-capacitor filters. IEEE Proc. Int. Symposium on Circuits and Systems, San Jose, USA (1986) 1186–1189Google Scholar
  84. 84.
    Smith, S.; Liu, F.; Ismail, M.: Active RC-building blocks for MOSFET-C integrated filters. IEEE Proc. Int. Symposium on Circuits and Systems, Philadelphia, USA (1987) 342–346Google Scholar
  85. 85.
    Khachab, N.I.; Ismail, M.: Novel continuous-time all MOS four-quadrant multipliers. IEEE Proc. Int. Symposium on Circuits and Systems, Philadelphia, USA (1987) 762–765Google Scholar
  86. 86.
    Park, C.-S.; Schaumann, R.: A high-frequency CMOS linear transconductance element. IEEE Trans. Circuits and Systems CAS-33 (1986) 1132–1138Google Scholar
  87. 87.
    Park, C.S.; Schaumann, R.: Design of an eighth-order fully integrated CMOS 4MHz continuous-time bandpass filter with digital/analog control of frequency and quality factor. IEEE Proc. Int. Symposium on Circuits and Systems, Philadelphia, USA (1987) 754–757Google Scholar
  88. 88.
    Tan, MA.; Schaumann, R.: Generation of transconductance grounded capacitor filters by signal-flow graph simulation of LC-ladders. IEEE Proc. Int. Symposium on Circuits and Systems ISCAS-88, Helsinki, Finland (1988) 2407–2410Google Scholar
  89. 89.
    Geiger, R.L.; SAnchez-Sinencio, E.: Active filter design using operational transconductance amplifiers: A tutorial. IEEE Circuits and Devices Mag. 1 (1985) 20–32Google Scholar
  90. 90.
    Babanezhad, J.N.; Ternes, G.C.: A linear NMOS depletion resistor and its application in an integrated amplifier. IEEE J. Solid-State Circuits SC-19 (1984) 932–938Google Scholar
  91. 91.
    Han, I.S.; Park, S.B.: Voltage-controlled linear resistor by two MOS transistors and its application to active RC filter integration. Proceedings of IEEE 72 (1984) 1655–1657CrossRefGoogle Scholar
  92. 92.
    Nay, K.; Budak, A.: A voltage-controlled resistance with wide dynamic range and low distortion. IEEE Trans. Circuits and Systems CAS-30 (1983) 770–772Google Scholar
  93. 93.
    Czarnul, Z.: Design of voltage-controlled linear transconductance elements with a matched pair of FET transistors. IEEE Trans. Circuits and Systems CAS-33 (1986) 1012–1015Google Scholar
  94. 94.
    Acar, C.; Ghausi, M.S.: Fully integrated active-RC filters using MOS and non-balanced structure. Int. J. of Circuit Theory and Applications 15 (1987) 105–121CrossRefGoogle Scholar
  95. 95.
    Radharkrishna Rao, K.; Venugopal, G.: A novel technique for the on-chip tuning of monolithic filters. Proceedings of IEEE 75 (1987) 257–258CrossRefGoogle Scholar
  96. 96.
    Nedungadi, A.; Viswanathan, T.R.: Design of linear CMOS transconductance elements. IEEE Trans. Circuits and Systems CAS-31 (1984) 891–894CrossRefGoogle Scholar
  97. 97.
    Torrance, R.R.; Viswanathan, T.R.; Hanson, J.V.: CMOS voltage to current transducers. IEEE Trans. Circuits and Systems CAS-32 (1985) 1097–1104CrossRefGoogle Scholar
  98. 98.
    Viswanathan, T.L.: CMOS transconductance element. Proceedings of IEEE 74 (1986) 222–224CrossRefGoogle Scholar
  99. 99.
    Kim,C.W.; Park, S.B.: New four-quadrant CMOS analogue multiplier. Electronics Letters 23 (1987) 1268–1270CrossRefGoogle Scholar
  100. 100.
    Seevinck, E.; Wassenaar, R.F.: A versatile CMOS linear transconductor/square-law function circuit. IEEE J. Solid-State Circuits SC-22 (1987) 366–377Google Scholar
  101. 101.
    Wong, S.L.; Kalyanasundaram, N.; Salama, C.A.T.: Wide dynamic range four-quadrant CMOS analog multiplier using linearized transconductance stages. IEEE J. Solid-State Circuits SC-21 (1986) 1120–1122Google Scholar
  102. 102.
    Bult, K.; Wallinga, H.: A class of analog CMOS circuits based on the square-law characteristic of an MOS transistor in saturation. IEEE J. Solid-State Circuits SC-22 (1987) 357–365Google Scholar
  103. 103.
    Penney, W.M.; Lau, L. (eds.): MOS Integrated Circuits. New York: Van Nostraud (1972)Google Scholar
  104. 104.
    Tsividis, Y.: Operation and Modeling of the MOS Transistor. New York: McGraw-Hill (1987)Google Scholar
  105. 105.
    Voorman, J.O.: Analog integrated filters or continuous-time filters for LSI and VLSI. Revue Phys. Appl. 22 (1987) 3–14Google Scholar
  106. 106.
    Tsividis, Y.: Signal processors with transfer function coefficients determined by timing. IEEE Trans. Circuits and Systems CAS-29 (1982) 807–817Google Scholar
  107. 107.
    Vallancourt, D.; Tsividis, Y.: Timing-controlled switched analog filters with full digital programmability. IEEE Proc. Int. Symposium on Circuits and Systems ISCAS-87, Philadelphia, USA (1987) 329–333Google Scholar
  108. 108.
    Vallancourt, D.; Tsividis, Y.P.: A fully programmable sampled-data analog CMOS filter with transfer-function coefficients determined by timing. IEEE J. Solid-State Circuits SC-22 (1987) 1022–1030Google Scholar
  109. 109.
    Cichocki, A.; Unbehauen, R.: Monolithic MOS switched-capacitor microsystems for nonlinear analog signal processing. IEEE Trans. Measurement and Instrumentation IM-37 (1988) 18–24Google Scholar
  110. 110.
    Cichocki, A.; Unbehauen, R.: Switched-capacitor function generators. Int. J. of Electronics 64 (1988) 359–375CrossRefGoogle Scholar
  111. 111.
    Cichocki, A.; Unbehauen, R.: Logarithmic and exponential switched-capacitor converters and some of their applications. IEE Proc. Electronic Circuits and Systems 135, Pt. G. (1988) 58–64Google Scholar
  112. 112.
    Cichocki, A.; Unbehauen, R.: Application of SC MOS delta and delta-sigma modulators to nonlinear signal processing. IEEE Proc. Int. Symposium on Circuits and Systems ISCAS-88, Helsinki, Finland (1988) 2233–2236Google Scholar
  113. 113.
    Nakayama, K.; Kuraishi, Y.: Present and future applications of switched-capacitor circuits. IEEE Circuits and Device Magazine (1987) 10–21Google Scholar
  114. 114.
    Smith, M.J.S.: On the circuit analysis of the Schmitt Trigger. IEEE J. Solid-State Circuits SC-23 (1988) 292–294Google Scholar
  115. 115.
    Filanovsky, I.M.; Finvers, I.G.: A simple nonsaturated CMOS multivibrator. IEEE J Solid-State Circuits SC-23 (1988) 289–292Google Scholar
  116. 116.
    Garverick, S.L.; Sodini, C.G.: A wide-band NMOS balanced modulator/amplifier which uses 1-Am transistors for linearity. IEEE J. Solid-State Circuits SC-23 (1988) 195–198Google Scholar
  117. 117.
    Song, B.-S.: Synchronous data recovery in RF communication channels. IEEE J. Solid-State Circuits SC-22 (1987) 1169–1176Google Scholar
  118. 118.
    Lewis, S.H.; Gray, P.R.: A pipelined 5-Msample/s 9-bit analog-to-digital converter. IEEE J Solid-State Circuits SC-22 (1987) 954–961Google Scholar
  119. 119.
    Roessler, B.; Wolter, E.: CMOS analog front end of a transceiver with digital echo cancellation for ISDN. IEEE J. Solid-State Circuits SC-23 (1988) 311–317Google Scholar
  120. 120.
    McCarroll, R.J.; Sodini, C.G.; Lee, H.-S.: A high-speed CMOS comparator for use in an adc. IEEE J. Solid-State Circuits SC-23 (1988) 159–165Google Scholar
  121. 121.
    Ryan, P.J.; Haigh, D.G.: Novel fully differential MOS transconductor for integrated continuous-time filters. Electronics Letters 23 (1987) 742–743CrossRefGoogle Scholar
  122. 122.
    Ismail, M.: Four-transistor continuous-time MOS transconductor. Electronics Letters 23 (1987) 1099–1100CrossRefGoogle Scholar
  123. 123.
    Ismail, M.; Smith S.V.; Beale, R.G.: A new MOSFET-C universal filter structure for VLSI. IEEE J. Solid-State Circuits SC-23 (1988) 183–194Google Scholar
  124. 124.
    Czarnul, Z.; Tsividis, Y.P.: Implementation of MOSFET-C filters based on active RC prototypes. Electronics Letters 24 (1988) 184–185CrossRefGoogle Scholar
  125. 125.
    Takagi, S.; Fujii, N.; Yanagisawa, T.: A canonical continuous-time MOSFET-capacitor filter with high linearity. IEEE Proc. Int. Symposium on Circuits and Systems ISCAS-88, Helsinki, Finland (1988) 2177–2180Google Scholar
  126. 126.
    Krummenacher, F.; Joehl, N.: A 4-MHz CMOS continuous-time filter with on-chip automatic tuning. IEEE J. Solid-State Circuits SC-23 (1988) 750–758CrossRefGoogle Scholar
  127. 127.
    Bult, K.; Wallinga, H.: A CMOS analog continuous-time delay line with adaptive delay-time control. IEEE J Solid-State Circuits SC-23 (1988) 759–766CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Rolf Unbehauen
    • 1
  • Andrzej Cichocki
    • 2
  1. 1.Lehrstuhl für Allgemeine und Theoretische ElektrotechnikUniversität Erlangen-NürnbergErlangenDeutschland
  2. 2.Technical UniversityWarsawPoland

Personalised recommendations