Standing-Wave Solutions

  • Roger G. Newton
Part of the Texts and Monographs in Physics book series (TMP)

Abstract

One of the standard solutions of the Schrôdinger equation is defined by means of the Green’s function
$$G_0^P (k,x)\;: = \;\frac{1}{{(2\pi )^3 }}P\;\int_{IR^3 } {dk} ^\prime \frac{{e^{ik' - x} }}{{k^2 - k'^2 }}\; = \; - \frac{{\cos k\left| x \right|}}{{4\pi \left| x \right|}},$$
(5.1)
where P stands for Cauchy’s Principal value, the integral equation
$$\psi ^P (k,\theta ,x) = e^{ik\theta \cdot x} + \int {_{IR^3 } dyG_0^P (k,x - y)V(y)\psi ^P (k,\theta ,y).} $$
(5.2)

Keywords

Schrodinger Equation Fredholm Determinant Dirac Distribution Reactance Matrix Martinelli Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Roger G. Newton
    • 1
  1. 1.Department of PhysicsIndiana UniversityBloomingtonUSA

Personalised recommendations