Skip to main content

Dynamic Cytomatrix-Membrane Interactions in Cell Shape and Organization

  • Conference paper
Biomechanics of Active Movement and Deformation of Cells

Part of the book series: NATO ASI Series ((ASIH,volume 42))

Abstract

Many cells assume various polarized shapes in vivo depending on their genetic program and their interaction with the environment consisting of neighbouring cells, intercellular matrix elements and signal molecules. Some of these processes can be reproduced in cell culture systems. The adoption of an asymmetric polarized cell shape involves active deformation and motility. This is generated by the interaction of cytoplasmic force generating molecules with membrane embedded components which transmit the forces onto the extracellular matrix. Order and polarity is also displayed within the cells interior by the non-random distribution of various organelles such as Golgi elements, lysosomes, mitochondria etc. This is predominantly dependent on dynamic interactions between the membrane-lined organelles and the microtubule system. The intracellular polarity is most often related to the polarity generated by the cells motile activity. Membrane components are exchanged continuously between the cell membrane and the intracellular compartments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abercrombie, M., Haeysman, J.E.M., Pegrum, S.M. (1970): The locomotion of fibroblasts in culture. III. Movements of particles on the dorsal surface of the leading lamella. Exp. Cell. Res. 62: 389–398.

    Article  PubMed  CAS  Google Scholar 

  • Beckerle, M.C. (1984): Microinjected fluorescent polystyrene beads exhibit saltatory motion in tissue culture cells. J. Cell Biol. 98: 2126–2132.

    Article  PubMed  CAS  Google Scholar 

  • Bretscher, M.(1984): Endocytosis: relation to capping and cell locomotion. Science 224: 681–686

    Google Scholar 

  • De Brabander, M., Geuens, G., Nuydens, R., Moeremans, M., De Mey, J. (1985): Probing microtubule-dependent intracellular motility with nanometre particle video ultramicroscopy (nanovid ultramicroscopy). Cytobios 43: 273–283.

    PubMed  Google Scholar 

  • De Brabander, M., Nuydens, R., Geuens, G., Moeremans, M., De Mey, J. (1986): The use of submicroscopic gold particles combined with video contrast enhancement as a simple molecular probe for the living cell. Cell Motil. Cytoskel. 6: 105–113

    Article  Google Scholar 

  • De Brabander, M., Nuydens, R., Geerts, H., Hopkins, C.R. (1988): Dynamic behavior of the transferrin receptor followed in living epidermal carcinoma (A431) cells with nanovid microscopy. Cell Motil. Cytoskel. 9: 30–47

    Article  Google Scholar 

  • Dembo, M., Harris, A.K. (1981): Motion of particles adhering to the leading lamella of crawling cells. J. Cell. Biol. 91: 528–536

    Article  PubMed  CAS  Google Scholar 

  • De Mey, J. (1984): Colloidal gold probes in immunocytochemistry. In: Polak, J.M., Van Noorden, S. (eds): Immunocytochemistry. Bristol, London, Boston. Wright PSG. pp. 82–112

    Google Scholar 

  • Freed, J.J., Lebowitz, M.M. (1970): The association of a class of saltatory movement with microtubules in cultured cells. J. Cell. Biol. 45: 334–354.

    Article  PubMed  CAS  Google Scholar 

  • Geerts, H., De Brabander, M., Nuydens, R., Geuens, S., Moeremans, M., De Mey, J., Hollenbeck, P. (1987): Nanovid tracking: a new automatic method for the study of mobility in living cells based on colloidal gold and video microscopy. Biophys. J. 52: 775–782.

    Article  PubMed  CAS  Google Scholar 

  • Hayden, J.H., Allen, R.D., Goldman, R.D. (1983): Cytoplasmic transport in keratocytes: direct visualization of particle translocation along microtubules. Cell. Motil. 3: 1–19.

    Article  PubMed  CAS  Google Scholar 

  • Heath, J. (1983): Behavior and structure of the leading lamella in moving fibroblasts. Occurence and centripetal movement of arc shaped microfilament bundles beneath the dorsal cell membrane. J. Cell. Sci. 60: 331–354

    PubMed  CAS  Google Scholar 

  • Herman, B. Albertini, D.F. (1983): Ligand-induced rapid redistribution of lysosomes is temporally distinct from endosome translocation. Nature 304: 738–740.

    Article  PubMed  CAS  Google Scholar 

  • Herman, B. Albertini, D.F. (1984): A time-lapse video image intensification analysis of cytoplasmic organelle movements during endosome translocation. J. Cell Biol. 98: 565–576.

    Article  PubMed  CAS  Google Scholar 

  • Hertel, C., Coulter, S.J., Perkins, J.P. (1986): The involvement of cellular ATP in receptor-mediated internalization of ß-adrenergic receptors. J. Biol. Chem. 261: 5974–5980.

    PubMed  CAS  Google Scholar 

  • Ho, W.C., Allan, V.J., Van Meer, E.G., Kreis, T.E. (1989): Reclustering of scattered Golgi elements occurs along microtubules. Eur. J. Cell Biol. 48: 250–263.

    PubMed  CAS  Google Scholar 

  • Hopkins, C.R. (1983): Intracellular routing of transferrin and transferrin receptors in epidermoid carcinoma A431 cells. Cell 35: 321–330.

    Article  PubMed  CAS  Google Scholar 

  • Hopkins, C. (1985): Coated pits and their role in membrane receptor internalization. In Cohen, P. and Houslay, M. (eds.): “Molecular Mechanisms of Transmembrane Signalling” Amsterdam: Elsevier Science Publishers B.V., pp. 337–357.

    Google Scholar 

  • Hopkins, C.R. (1985) The appearance and internalization of transferrin receptors at the margins of spreading human tumor cells. Cell: 40: 199–208.

    Article  PubMed  CAS  Google Scholar 

  • Hopkins, C.R., Trowbridge, I.S. (1983): Internalization and processing of transferrin and the transferrin receptor in human carcinoma A431 cells. J. Cell Biol. 97: 508–521.

    Article  PubMed  CAS  Google Scholar 

  • Ishihara, A., Hou, Y., Jacobson, K. (1987): The Thy-I antigen exibits rapid lateral diffusion in the plasma membrane of rodent lymphoid cells and fibroblasts. Proc. Natl. Acad. Sci. USA 84: 1290–1293.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, K. (1980): Fluorescence recovery after photobleaching: lateral mobility of lipids and proteins in model membranes and on single cell surfaces. In Hillenkamp, F., Pratesi, R. and Sacchi, C.A. (eds.): “Lasers in Biology and Medicine”, New York: Plenum Press Publishers, pp. 271–288.

    Google Scholar 

  • Jacobson, K., O’Dell, D., Holifield, B., Murphy, T., August, T. (1984): Redistribution of a major cell surface glycoprotein during cell movement. J. Cell Biol. 99: 1613–1623

    Article  PubMed  CAS  Google Scholar 

  • Lee, C., Chen, L.B. (1988) Dynamic behavior of endoplasmic reticulum in living cells. Cell. 54: 37–46.

    Article  PubMed  CAS  Google Scholar 

  • Mclntosh, J.R., Porter, M.E. (1989): Enzymes for microtubule dependent motility. J. Biol. Chem. 264: 6001–6004.

    Google Scholar 

  • Miller, K., Beardmore, J., Kanety, H., Schlessinger, J., Hopkins, C.R. (1986): Localization of the epidermal growth factor (EGF) receptor within the endosome of E GF-stimulated epidermoid carcinoma (A431) cells. J. Cell Biol. 102: 500–509.

    Article  PubMed  CAS  Google Scholar 

  • Pastan, I., Willingham, M.C. (1983): Receptor-mediated endocytosis: coated pits, receptosomes and the Golgi. Trends Biochem. Sci. July: 250–254.

    Google Scholar 

  • Peters, R. (1981): Translational diffusion in the plasma membrane of single cells as studied by fluorescence microphotolysis. Cell Biol. Int. Rep. 5: 733–760.

    Article  PubMed  CAS  Google Scholar 

  • Rebhun, L.I. (1964): Saltatory particle movements. In Allen, R.D. and Kamiya, N. (Eds.): “Primitive Motile Systems in Cell Biology” New York: Academic Press Inc., p. 503.

    Google Scholar 

  • Schlessinger, J., Schechter, Y., Cuatrecasas, P., Willingham, M.C, Pastan, I. (1978): Quantitative determination of the lateral diffusion coefficients of the hormone-receptor complexes of insulin and epidermal growth factor on the plasma membrane of cultured fibroblasts. Proc. Natl. Acad. Sci. USA 75: 5353–5357.

    Article  PubMed  CAS  Google Scholar 

  • Schliwa, M. (1984): Mechanisms of intracellular transport. Cell Muscle Motil. 5: 1–82.

    Article  PubMed  CAS  Google Scholar 

  • Singer, S.J. Nicolson, G.L. (1972): The fluid mosaic model of the structure of cell membranes. Science 175: 720–731.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, D.L., Wang, Y.L. (1980): Fluorescently labelled molecules as probes of the structure and function of living cells. Nature 284: 405–410

    Article  PubMed  CAS  Google Scholar 

  • Vale, R.D., Reese, T.S. Sheetz, M.P. (1985): Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42: 39–50.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

De Brabander, M., Nuydens, R., Geerts, H. (1990). Dynamic Cytomatrix-Membrane Interactions in Cell Shape and Organization. In: Akkaş, N. (eds) Biomechanics of Active Movement and Deformation of Cells. NATO ASI Series, vol 42. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83631-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83631-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83633-6

  • Online ISBN: 978-3-642-83631-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics