Skip to main content

Microdissection and Biochemical Analysis of Plant Tissues

  • Chapter
Physical Methods in Plant Sciences

Part of the book series: Modern Methods of Plant Analysis ((MOLMETHPLANT,volume 11))

Abstract

Biological tissues are not homogenous; instead they consist of cells having specific functions. A typical bifacial leaf, for example, contains not only photosynthetic mesophyll cells (palisade parenchyma plus spongy parenchyma) but also epidermal, guard, and bundle-sheath cells, as well as myriad minor cell types. Their specific functions indicate that profound biochemical differences exist among adjacent cells. These differences are obliterated by tissue homogenation, which precedes most analytical biochemistry. Biologists have thus been challenged to develop methods that allow for selective sampling of specific cell types and analysis of the resultant small amounts of material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altmann R (1889) Die Elementarorganismen und ihre Beziehungen zu Zellen. Verlag W Engelmann, Leipzig

    Google Scholar 

  • Asahina E (1956) The freezing process in plant cells. Contrib Inst Low Temp Sci. Hokkaido Univ Ser A. No 10: 83–126

    Google Scholar 

  • Chayen J, Cunningham GJ, Gahan PB, Silcox AA (1960a) Life-like preservation of cytoplasmic detail in plant cells. Nature 186: 1068–1069

    Article  PubMed  CAS  Google Scholar 

  • Chayen J. Cunningham GJ, Gahan PB, Silcox AA (1960b) Newer methods in cytology. Bull Res Counc Isr 8D: 273–279

    Google Scholar 

  • Gahan PB (1967) Freeze sectioning of plant tissues: the technique and its use in histochemistry. J Exp Bot 18: 151–159

    Article  CAS  Google Scholar 

  • Gahan PB (1984) Plant histochemistry and cytochemistry. An introduction. Academic Press, Lond NY

    Google Scholar 

  • Gahan PB, McLean J, Kalina M. Sharma W (1967) Freeze sectioning of plant tissues: The technique and its use in histochemistry. J Exp Bot 18: 151–159

    Google Scholar 

  • Gersh I (1932) The Altmann technique for fixation by drying while freezing. Anat Rec 53: 309

    Article  Google Scholar 

  • Guder WG, Pürschel S, Vandewalle A, Wirthensohn G (1984)Bioluminescence procedures for the measurement of NAD(P) dependentenzyme catalytic activities in submicrogram quantities of rabbit and human nephron structures.J Clin Chem Clin Biochem 22: 129–140

    Google Scholar 

  • Hampp R (1985) ADP, AMP; Luminometric method. In: Bergmeyer J, GraBI M (eds) Methods in enzymatic analysis, vol 7. Verlag Chemie, Weinheim, pp 370–379

    Google Scholar 

  • Hampp R, Outlaw WH Jr, Tarczynski MC (1982) Profile of basic carbon pathways in guard cells and other leaf cells of Vicia faba L. Plant Physiol 70: 1582–1585

    Article  PubMed  CAS  Google Scholar 

  • Hampp R, Outlaw WH Jr, Ziegler H (1987) Quantitative histochemical analysis of starch, malate, and K+, together with the activity of phosphoenolpyruvate carboxylase along an elongating primary leaf of Hordeum vulgare. Z Naturforsch 42c: 1092–1096

    CAS  Google Scholar 

  • Harris MJ, Outlaw WH Jr, Mertens R, Weiler EW (1988) Water-stress-induced changes in the abscisic acid content of guard cells and other cells of Vicia faba L. leaves as determined by enzyme-amplified immunoassay. Proc Natl Acad Sci USA 85: 2584–2588

    Article  PubMed  CAS  Google Scholar 

  • Jensen WA (1962) Botanical histochemistry. Freeman, San Francisco

    Google Scholar 

  • Jones MGK, Outlaw WH Jr, Lowry OH (1977) Enzymic assay of 10‒7 to 10−4 moles of sucrose in plant tissues. Plant Physiol 60: 379–383

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Lowry OH (1973) Distribution of enzymes between nucleus and cytoplasm of single nerve cell bodies. J Biol Chem 248: 2044–2048

    PubMed  CAS  Google Scholar 

  • Lowry OH, Passonneau JV ( 1972 ) A flexible system of enzymatic analysis. Academic Press, Lond NY Morgan JM (1984)

    Google Scholar 

  • Osmoregulation and water stress in higher plants. Ann Rev Plant Physiol 35:299–319

    Google Scholar 

  • Outlaw WH Jr (1982) Carbon metabolism in guard cells. In: Creasy LL, Hrazdina G (eds) Cellular and subcellular localization in plant metabolism. Plenum Press, NY, pp 185–222

    Google Scholar 

  • Outlaw WH Jr (1983) Current concepts on the role of potassium in stomata] movements. Physiol Plant 59: 302–311

    Article  CAS  Google Scholar 

  • Outlaw WH Jr, Kennedy J (1978) Enzyme and substrate basis for the anaplerotic step in guard cells. Plant Physiol 62: 648–652

    Article  PubMed  CAS  Google Scholar 

  • Outlaw WH Jr, ManchesterJ, Zenger VE (1981) The relationship between protein content and dry weight of guard cells and other single cell samples of Vicia faba L. leaflet. Histochem J 13: 329–336

    CAS  Google Scholar 

  • Outlaw WH Jr, Springer SA, Tarczynski MC (1985) Histochemical technique. A general method for quantitative enzyme assays of single cell ‘extracts’ with a time resolution of seconds and a reading precision of femtomoles. Plant Physiol 77: 659–666

    Google Scholar 

  • Pearse AGE (1980) Histochemistry: theoretical and applied. Vol 1. Churchill, Lond

    Google Scholar 

  • Pearson CJ, Milthorpe FL (1974) Structure, carbon dioxide fixation and metabolism of stomata. Aust J Plant Physiol 1: 221–236

    Article  CAS  Google Scholar 

  • Raspail FV (1825) Developpement de la fécule dans les organes de la fructification des céréales et analyse microscopique de la fécule, suivie d’expériences propres à enexpliquer la conversion engomme. Ann Sci Nat 6: 224–239

    Google Scholar 

  • Ruge WA, Hampp R (1987) Leaf movements of nyctinastic plants — a review. Plant Physiol ( Ind Acad Sci, Life Sci Adv ) 6: 149–158

    Google Scholar 

  • Satter RL. Galston AW (1981) Mechanisms of control of leaf movements. Annu Rev Plant Physiol 32: 83–110

    Google Scholar 

  • Starrach N, Flach D, Mayer WE (1985) Activity of fixed negative charges of isolated extensor cell walls of the inner laminar pulvinus of primary leaves of Phaseolus. J Plant Physiol 120: 441–455

    CAS  Google Scholar 

  • Verhoek-Köhler B, Hampp R, Ziegler H. Zimmermann U (1983) Electro-fusion of mesophyll protoplasts of Avena sativa. Determination of the cellular adenylate-level of hybrids and its influence on the fusion process. Planta 158: 199–204

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hampp, R., Rieger, A., Outlaw, W.H. (1990). Microdissection and Biochemical Analysis of Plant Tissues. In: Linskens, HF., Jackson, J.F. (eds) Physical Methods in Plant Sciences. Modern Methods of Plant Analysis, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83611-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83611-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83613-8

  • Online ISBN: 978-3-642-83611-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics