Viscous-Inviscid Strategy and Computation of Transonic Buffet

  • J. C. Le Balleur
  • P. Girodroux-Lavigne
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)


After summarizing the viscous-inviscid strategy, the progress in non-boundary-layer formulations and in numerical coupling techniques, an interacting time-dependent thin-layer method is presented, and shown capable of computing time-consistently the transonic buffet over airfoils. The method approximates the Defect Formulation theory with a modelling of the instantaneous viscous velocity profiles, and fully recovers the viscous upstream influence from a time-consistent viscous-inviscid coupling, converged at each time-step. Results are shown both for a supercritical and an NACA0012 airfoil. The computed buffet-onset, and buffet time-evolutions, are compared with available experiments versus incidence and Mach number.


Vortex Enthalpy Vorticity Resi 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Le Balleur, J.C.: Viscous-inviscid interaction solvers and computation of highly separated flows. — “Studies of Vortex Dominated flows”, chap. 3, p.159–192, Proceed. ICASE symp. NASA Langley Field, USA, (July 9–10, 1985), Hussaini and Salas ed., Springer-Verlag 1987, (or ONERA-TP 1986–4).Google Scholar
  2. [2]
    Le Balleur, J.C., Blaise, D.: Computation of separated internal flows and shock wave-boundary layer interactions by viscous-inviscid interaction. - La Recherche Aerospatiale 1985–4, p. 211–227, English and French editions, ( July 1985 ).Google Scholar
  3. [3]
    Girodroux-Lavigne, P., Le Balleur, J.C.: Unsteady viscous-inviscid interaction method and computation of buffeting over airfoils. Proceed. IMA/SMAI Conf. “Computational Methods in Aeronautical Fluid Dynamics”, Reading, England (6–8 April 1987), Springer-Verlag 1988, to appear, (or ONERA-TP 1987–58).Google Scholar
  4. [4]
    Le Balleur, J.C.: Computation of flows including strong viscous interactions with coupling methods. - AGARD-CP-291, General Introduction, Lecture 1, Colorado Springs (1981), or ONERA-TP 1980–121.Google Scholar
  5. [5]
    Le Balleur, J.C.: Viscous-inviscid flow matching: Analysis of the problem including separation and shock waves. - La Recherche Aerospatiale 1977–6, p. 349–358 (Nov.1977). French, or English transl. ESA-TT-476.Google Scholar
  6. [6]
    Le Balleur, J.C.: Viscous-inviscid flow matching: Numerical method and applications to two-dimensional transonic and supersonic flows. - La Recherche Aerospatiale 1978–2, p.67–76 (March 1978). French, or English transi. ESA-TT-496.Google Scholar
  7. [7]
    Le Balleur, J.C.: Strong matching method for computing transonic viscous flows including wakes and separations. Lifting airfoils. - La Recherche Aerospatiale 1981–3, p. 21–45, English and French editions, ( March 1981 ).Google Scholar
  8. [8]
    Le Balleur, J.C., Peyret, R., Viviand, H.: Numerical studies in high Reynolds number aerodynamics–Computers and Fluids, Vol. 8, no 1, p. 1–30, (March 1980).MATHGoogle Scholar
  9. [9]
    Le Balleur, J.C.: Numerical viscid-inviscid interaction in steady and unsteady flows. - Proceed. 2nd Symp. Numerical and Physical Aspects of Aerodynamic Flows, Long-Beach, (1983), chapt.13, p. 259–284 T. Cebeci ed., Springer-Verlag, 1984, (or ONERA-TP 1983–8).Google Scholar
  10. [10]
    Carter, J.E.: A new boundary layer interaction technique for separated flows. - AIAA Paper. no 79–1450, 4th Comp. FI. Dyn. Conference, ( July 1979.Google Scholar
  11. [11]
    Veldman, A.E.P.: New, quasi-simultaneous method to calculate interacting boundary layers.–AIAA J. Vol. 19, no 1 (1981), p. 79–85.MATHGoogle Scholar
  12. [12]
    Le Balleur, J.C., Girodroux-Lavigne, P.: A semi-implicit and unsteay numerical method of viscous-inviscid interaction for transonic separated flows. - La Recherche Aerospatiale 1984–1, p. 15–37, English and French editions, ( Jan. 1984 ).Google Scholar
  13. [13]
    Le Balleur, J.C., Girodroux-Lavigne, P.: A viscous-inviscid interaction method for computing unsteady transonic separation. - Proceed. 3rd Symp. Numerical and Physical Aspects of Aerodynamic Flows, Long-Beach (Jan. 1985 ), T. Cebeci ed., Springer-Verlag (1986).Google Scholar
  14. [14]
    Houwink, R., Veldman, A.E.P.: Steady and unsteady separated flow computations for transonic airfoils. - NLR MP 84028U, or AIAA Paper 84–168, Snow-mass, Colorado (June 1984).Google Scholar
  15. [15]
    Couston, M. Angelini, J.J.: Solution of nonsteady two-dimensional transonic small disturbances potential flow equation. - ASME Conf., San Francisco (1978) or J. of Fluids Engin., vol. 101, no 3, (1979).Google Scholar
  16. [16]
    Dor, J.B., Mignosi, A., Seraudie, A., Benoit, B.: Wind Tunnel Studies of Natural Shock Wave - Separation Instabilities, for Transonic Airfoil Tests. - Proceed. IUTAM Symposium Transsonicum Ill, Göttingen, Germany ( 24–27 May 1988 ), Springer-Verlag, to appear.Google Scholar
  17. [17]
    Benoit, B., Legrain, I.: Buffeting Prediction for Transport Aircraft Applications Based on Unsteady Pressure Measurements — AIAA CP 875–5th Applied Aerodynamics Conference, Monterey, 17–19 August 1987.Google Scholar
  18. [18]
    Mc Devitt, J.B., Okuno, A.F.: Static and Dynamic Pressure Measurements on a NACA0012 Airfoil in the High Reynolds Number Facility. NASA Technical Paper 2485, (June 1985).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • J. C. Le Balleur
    • 1
  • P. Girodroux-Lavigne
    • 1
  1. 1.ONERAChatillon CedexFrance

Personalised recommendations