Quark Matter pp 317-324 | Cite as

The EMC effect — status and perspectives

Conference paper


Recent experimental results on the EMC effect are presented. The ratios of structure functions for nuclei and deuterium measured by the two muon experiments at CERN show a clear enhancement of a few percent for x < 0.25. At x below 0.05 substantial shadowing with little Q 2 dependence has been observed by a dedicated low angle experiment of the EMC. No significant nuclear mass dependence of R = σ L σ T has been seen in the SLAC experiment E140. There are several indications that the Q 2 evolution of nuclear structure functions deviates from the expectations of perturbative QCD and that the gluon distribution in nuclei is harder than in free nucleons. This is possibly caused by nucleon-nucleon correlations on the quark-gluon level. Many aspects of the EMC effect are presently being investigated by the high energy muon experiment of the NMC collaboration at CERN and a Drell-Yan experiment at FNAL. First results can be expected soon. They will help to develop a better understanding of nuclear effects in quark and gluon distributions.


Structure Function Gluon Distribution Quark Distribution Nuclear Effect High Twist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a list of references see for instance, K. Rith: Proc. of the Int. Nucl. Phys. Conf., Harrogate 1986, J.L. Durrel, J.M. Irvine, G.C. Morrison (eds.): Inst. of Phys. Series 86, p. 395. Institute ofPhysics, Bristol (1987)Google Scholar
  2. 2.
    R.G. Arnold et al.: Phys. Rev. Lett. 52 (1984) 1431CrossRefGoogle Scholar
  3. 3.
    J.J. Aubert et al.: Phys. Lett. 123 B (1983) 275ADSGoogle Scholar
  4. 4.
    A. Bodek et al.: Phys. Rev. Lett. 50 (1983) 1431; Phys. Rev. Lett. 51 (1983) 534ADSCrossRefGoogle Scholar
  5. 5.
    S. Stein et al.: Phys. Rev. D 12 (1975) 1884ADSCrossRefGoogle Scholar
  6. 6.
    J. Gomez: SLAC PUB 3552 (1985)Google Scholar
  7. 7.
    M. Harada: Contribution to the XI International Conference on Particles and Nuclei, Kyoto 1987, to appear in the proceedingsGoogle Scholar
  8. 8.
    G. Altarelli, G. Martinelli: Phys. Lett. 76 B (1978) 89ADSGoogle Scholar
  9. 9.
    A.C. Benvenuti et al.: Phys. Lett. 189 B (1987) 483ADSGoogle Scholar
  10. 10.
    J. Ashman et al: preprint CERN-EP/87-230 (Dec. 1987), to appear in Phys. Lett. BGoogle Scholar
  11. 11.
    H. Abramowicz et al.: Z. Phys. C — Particles and Fields 17, (1983) 283; F. Bergsma et al.: Phys. Lett. 123 B (1983) 269; Phys. Lett. 153 B (1985) 111; D.B. MacFarlane etal.: Z. Phys. C — Particles and Fields 26 (1984) 1ADSCrossRefGoogle Scholar
  12. 12.
    JJ. Aubert et al.: Nucl. Phys. B 293 (1987) 740ADSCrossRefGoogle Scholar
  13. 13.
    D.O. Caldwell et al.: Phys. Rev. Lett. 42 (1979) 553 and references thereinADSCrossRefGoogle Scholar
  14. 14.
    For a review see: G. Grammer, J. Sullivan in A. Donnachie, G. Shaw: Electromagnetic interactions of hadrons, Vol. 2. New York: Plenum Press 1978Google Scholar
  15. 15.
    J.D. Bjorken: Springer Tracts in Modern Physics, Vol. 108, p. 17. Berlin, Heidelberg, New York: Springer 1986Google Scholar
  16. 16.
    N.N. Nikolaev, V.I. Zakharov: Phys. Lett. 55B (1975) 397; L. Gribov et al.: Phys. Rep. 100 (1984) 1; E.M. Levin: Leningrad preprint LINR 1147 (1985); A.H. Mueller, J. Qiu: Nucl. Phys. B 268 (1986) 427; J. Qiu: Nucl. Phys. B 291 (1987) 746ADSGoogle Scholar
  17. 17.
    H. Abramowicz et al.: Z. Phys. C — Particles and Fields 25 (1984) 29ADSCrossRefGoogle Scholar
  18. 18.
    J. Guy et al.: Z. Phys. C — Particles and Fields 36 (1987) 337ADSCrossRefGoogle Scholar
  19. 19.
    E.L. Berger: Nucl. Phys. B267 (1986) 231ADSCrossRefGoogle Scholar
  20. 20.
    P.P. Bickerstaffet al.: Phys. Rev. D33 (1986) 3228ADSGoogle Scholar
  21. 21.
    J.J. Aubert et al.: Phys. Lett. 152B (1985) 433ADSGoogle Scholar
  22. 22.
    M.D. Sokoloff et al.: Phys. Rev. Lett. 57 (1986) 3003ADSCrossRefGoogle Scholar
  23. 23.
    G. Altarelli, G. Parisi: Nucl. Phys. B 126 (1977) 298ADSCrossRefGoogle Scholar
  24. 24.
    P.P. Bickerstaff, G. Miller: Phys. Rev. D 34 (1986) 2890ADSCrossRefGoogle Scholar
  25. 25.
    E.V. Shuryak: Nucl. Phys. A446 (1985) 259cADSGoogle Scholar
  26. 26.
    CDHSW Collaboration, for instance H.D. Brummel: Proc. of the European Physical Society, Petit-Lancy (1987) Uppsala 1987, International Europhysics Conference on High Energy Physics, O. Botner (ed.), p. 432Google Scholar
  27. 27.
    R. Voss: preprint CERN-EP/87-223 (Dec. 1987), to appear in the Proc. of the 1987 Symposium on Lepton and Photon Interactions at High Energies, Hamburg 1987Google Scholar
  28. 28.
    J.J. Aubert et al.: Nucl. Phys. B259 (1985) 189ADSCrossRefGoogle Scholar
  29. 29.
    For a more detailed discussion see for instance: K. Rith: Proc. of the Conf. “The Elementary Structure of Matter”, J.-M. Richard, E. Astanides, N. Boccara: Springer Proceedings in Physics 26, Berlin, Heidelberg, New York: Springer 1988Google Scholar
  30. 30.
    J. Vary: Proc. of the 7th Int. Conf. on High Energy Physics Problems, Dubna 1984, A. Titov (ed.), p. 147Google Scholar
  31. 31.
    A.E. Asratyan et al: preprint ITEP-115 (1985)Google Scholar
  32. 32.
    NMC Collab., G. Baum et al.: Proposal CERN/SPSC/85–18, SPSC/P210 (1985)Google Scholar
  33. 33.
    O.C. Allkofer et al.: Nucl. Instrum. Methods 179 (1981) 445ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • K. Rith
    • 1
  1. 1.Max-Planck-Institut für KernphysikHeidelberg 1Federal Republic of Germany

Personalised recommendations