Nonlinear Surface Acoustic Waves and Their Associated Surface Acoustic Solitons

  • A. A. Maradudin
Conference paper
Part of the Springer Series on Wave Phenomena book series (SSWAV, volume 7)

Abstract

We obtain the nonlinear dispersion relation, and the associated displacement field, for nonlinear surface acoustic waves of shear horizontal polarization that propagate without change of form in a system that consists of a film of thickness d of a linear, cubic elastic medium bonded to a semi-infinite, nonlinear, cubic elastic medium. From the nonlinear dispersion relation we obtain the nonlinear Schrödinger equation governing the propagation of a surface acoustic soliton in this system by methods developed originally by Whitham, Yuen and Lake, and Karpman and Krushkal΄. It is found that stable solutions of this equation can exist in the system under consideration.

Keywords

Soliton Expense Acoustics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Kalyanasundaram: Int. J. Engng. Sci. 19, 279 (1981).CrossRefMATHGoogle Scholar
  2. 2.
    N. Kalyanasundaram: Int. J. Engng. Sci. 19, 287 (1981).CrossRefMATHGoogle Scholar
  3. 3.
    N. Kalyanasundaram: J. Acoust. Soc. Am. 72, 1518 (1982).CrossRefMATHADSMathSciNetGoogle Scholar
  4. 4.
    D. F. Parker and F. M. Talbot: In Nonlinear Deformation Waves, eds. U. Nigul and J. Engelbrecht ( Springer-Verlag, New York, 1983 ), p. 397.CrossRefGoogle Scholar
  5. 5.
    D. F. Parker: Physica 16D, 385 (1985).MATHMathSciNetGoogle Scholar
  6. 6.
    D. F. Parker and F. M. Talbot: J. Elasticity 15, 389 (1985).CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Strictly speaking, a soliton is a solitary wave that on colliding with another solitary wave passes through the latter without change of form and with only a small change in the phase of each. However, since the term “surface acoustic soliton” has entered the literature, and since it is less clumsy than the term “surface acoustic solitary wave,” we will use the former here.Google Scholar
  8. 8.
    K. Bataille and F. Lund: Physica 16D, 95 (1985).MathSciNetGoogle Scholar
  9. 9.
    T. Sakuma and Y. Kawanami: Phys. Rev. B29, 869 (1984).CrossRefADSGoogle Scholar
  10. 10.
    T. Sakuma and Y. Kawanami: Phys. Rev. B29, 880 (1984).ADSGoogle Scholar
  11. 11.
    T. Sakuma and T. Miyazaki: Phys. Rev. B33, 1036 (1986).CrossRefADSGoogle Scholar
  12. 12.
    T. Sakuma and O. Saito: Phys. Rev. B35, 1294 (1987).ADSGoogle Scholar
  13. 13.
    See, for example, D. R. Bland: Nonlinear Dynamic Elasticity (Blaisdell, Waltham MA, 1969), p. 2ff.MATHGoogle Scholar
  14. 14.
    See, for example, J. D. Cole: Perturbation Methods in Applied Mathematics ( Blaisdell, Waltham MA, 1968 ).MATHGoogle Scholar
  15. 15.
    Some authors, however, object to the presence of such terms. See, for example, R. W. Lardner: J. Appl. Phys. 55, 3251 (1984).CrossRefADSGoogle Scholar
  16. 16.
    A. D. Boardman, G. S. Cooper, A. A. Maradudin, and T. P. Shen: Phys. Rev. B34, 8273 (1986).CrossRefADSGoogle Scholar
  17. 17.
    G. B. Whitham: Linear and Nonlinear Waves ( John Wiley and Sons, New York, 1974 ), p. 363.MATHGoogle Scholar
  18. 18.
    H. C. Yuen and B. M. Lake: Phys. Fluids 18, 956 (1975).CrossRefMATHADSGoogle Scholar
  19. 19.
    V. I. Karpman and E. M. Krushkal΄: Zh. Eksp. Teor. Fiz. 55, 530 (1968) [Soviet Physics — JETP 28, 277 (1969)].Google Scholar
  20. 20.
    R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris: Solitons and Nonlinear Wave Equations (Academic Press, New York, 1982), p. 505 ff.Google Scholar
  21. 21.
    V. E. Zakharov and A. B. Shabat: Zh. Eksp. Teor. Fiz. 61, 118 (1971) [Soviet Physics — JETP 34, 62 (1972)].Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • A. A. Maradudin
    • 1
  1. 1.Department of PhysicsUniversity of CaliforniaIrvineUSA

Personalised recommendations