Skip to main content

Enamel

  • Chapter
Teeth

Part of the book series: Handbook of Microscopic Anatomy ((1668,volume 5 / 6))

Abstract

The enamel which we consider in this chapter is the hard, white, external covering of human teeth. We shall also make considerable reference to the same tissue in the teeth of other mammals, which is distinguished from analogous coatings on teleost, chondrichthyan, reptilian and amphibian teeth by its division into microscopic units, roughly corresponding to the size of its secretory cells, called prisms. At least, that has been accepted as “a fact” until recently, but recent reports have described prisms in reptilian enamel (Cooper and Poole 1973; Sahni 1984; Dauphin 1987 a, b; see also Poole 1956). Not all mammals have enamel. The order Edentata is distinguished by having none, and not all of mammalian enamel is white. Parts of the most superficial enamel are pigmented red by ferric iron in rodent incisors and shrew molars (Boyde et al. 1961).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott F (1889) Growth of enamel. Dent Cosmos 31:749–762

    Google Scholar 

  • Abrigo SC (1972) Enamel crystal development in the rat incisor. Thesis, Case Western Reserve University

    Google Scholar 

  • Allan J A (1967) Maturation of enamel. In: Miles AEW (ed) Structural and chemical organisation of teeth. Academic, New York, pp 467–492

    Google Scholar 

  • Allan JH (1959a) Investigation into the mineralisation pattern of human dental enamel. I. Polarised light studies. J Dent Res 38:1096–1107

    CAS  Google Scholar 

  • Allan JH (1959b) Investigation into the mineralisation pattern of human dental enamel. II. X-ray absorption studies. J Dent Res 38:1109–1118

    Google Scholar 

  • Allan JH (1959c) Investigation into the mineralisation pattern of human dental enamel. III. Decalcified section studies. J Dent Res 38:119–1128

    Google Scholar 

  • Angmar B, Carlstrom D, Glas JE (1963) Studies on the ultrastructure of dental enamel. IV. The mineralization of normal human enamel. J Ultrastruct Res 8:12–23

    PubMed  CAS  Google Scholar 

  • Angmar-Mansson B (1971) A quantitative microradiographic study on the organic matrix of developing human enamel in relation to the mineral content. Arch Oral Biol 16:133–145

    Google Scholar 

  • Aoba T, Tanabe T, Moreno EC (1988) Function of amelogenins in porcine enamel mineralisation during the secretory stage. Adv Dent Res (1988)

    Google Scholar 

  • Applebaum E (1966) The arrangement of the enamel rods. NY State Dent J 26:185–188

    Google Scholar 

  • Arends J, Jongebloed WL (1979) Ultrastructural studies of synthetic apatite crystals. J Dent Res [Suppl B] 58:837–843

    PubMed  CAS  Google Scholar 

  • Asper H (1916) Über die braune Retzius’sche Parallelstreifung im Schmelz der menschlichen Zähne. Schw Vrtljschr Zahnheilk 26:277–314

    Google Scholar 

  • Avery JK, Visser RL, Knapp DE (1961) The pattern of mineralisation of enamel. J Dent Res 40:1004–1019

    Google Scholar 

  • Belanger LF (1957) The mineralization of rat enamel in the light of Ca45 autoradiography and microincineration. J Dent Res 36:595–601

    PubMed  CAS  Google Scholar 

  • Belcourt AB (1984) High molecular weight proteins in developing enamel their probable interactions. In: Fearnhead RW, Suga S (eds) Tooth enamel IV. Elsevier, Amsterdam, pp 540–542

    Google Scholar 

  • Beynon AD, Dean MC (1987) Crown-formation time of a fossil hominid premolar tooth. Arch Oral Biol 32:773–780

    PubMed  CAS  Google Scholar 

  • Beynon AD, Wood BA (1987) Patterns and rates of enamel growth in the molar teeth of early hominids. Nature 326:493–496

    PubMed  CAS  Google Scholar 

  • Boyde A (1963) Estimation of age at death of young human skeletal remains from incremental lines in dental enamel. Third International Meeting, in Forensic Immunology, Medicine, Pathology, and Toxicology (London April 16-24 1983) Plenary Session IIA. Copies may be obtained from the author

    Google Scholar 

  • Boyde A (1964) The structure and development of mammalian enamel. Thesis, available from Senate House Library, University of London

    Google Scholar 

  • Boyde A (1965) The structure of developing mammalian dental enamel. In: Stack MV, Fearnhead RW (eds) Tooth enamel [1964]. Wright, Bristol, pp 163–171,192

    Google Scholar 

  • Boyde A (1967) The development of enamel structure. Proc Roy Soc Med 60:923–928

    PubMed  CAS  Google Scholar 

  • Boyde A (1968) Correlation of ameloblast size with enamel prism pattern: Use of scanning electron microscope to make surface area measurements. Z Zellforsch 93:583–593

    Google Scholar 

  • Boyde A (1969) Electron microscopic observations relating to the nature and development of prism decussation in mammalian dental enamel. Bull Group Int Rech Sci Stomatol Odontol 12:151–207

    CAS  Google Scholar 

  • Boyde A (1970) The surface of the enamel in human hypoplastic teeth. Arch Oral Biol 15:pp 897–898

    PubMed  CAS  Google Scholar 

  • Boyde A (1971a) Scanning electron microscopy of the completed enamel surface. In: Fearnhead RW, Stack MV (eds) Tooth enamel II [1969]. Wright, Bristol, pp 39–41

    Google Scholar 

  • Boyde A (1971b) The tooth surface. In: Eastoe JE, Picton DC, Alexander A (eds) The prevention of periodontal disease [1970]. Kimpton, London, pp 46–63

    Google Scholar 

  • Boyde A (1971c) New surface features of human dental enamel. J Anat 109:343–344

    Google Scholar 

  • Boyde A (1973) Quantitative photogrammetric analysis and qualitative stereoscopic analysis of SEM images. J Microsc 98:452–471

    Google Scholar 

  • Boyde A (1975) A method for the preparation of cell surfaces hidden within bulk tissue for examination in the SEM. SEM/1975 1:295–303

    Google Scholar 

  • Boyde A (1976a) Enamel structure and cavity margins. Operative Dentistry 1:13–28

    Google Scholar 

  • Boyde A (1976b) Amelogenesis and the structure of enamel. In: Cohen B, Kramer IRH (eds) Scientific Foundations of Dentistry. Heinemann, London, pp 335–352

    Google Scholar 

  • Boyde A (1978a) Cutting teeth in the SEM. Scanning 1:157–165

    Google Scholar 

  • Boyde A (1978b) Development of the structure of the enamel in the incisor teeth in the three classical subordinal groups in the Rodentia. In: Butler PM, Joysey KA (eds) Development, function and evolution of teeth [1976]. Academic, London, pp 43–58

    Google Scholar 

  • Boyde A (1979) Carbonate concentration, crystal centers, core dissolution, caries, cross striations, circadian rhythms, and compositional contrast in the SEM. J Dent Res [Spec Suppl B] 58:981–983

    PubMed  CAS  Google Scholar 

  • Boyde A (1980) Histological studies of dental tissues of odontocetes. Sci Rep Int Whaling Comm (Special Issue) 3:65–87

    Google Scholar 

  • Boyde A (1983) Airpolishing effects on enamel, dentine and cement. Br Dent J 156:287–291

    Google Scholar 

  • Boyde A (1985) Anatomical considerations relating to cavity preparation. In: Vanherle G, Smith DC (eds) Posterior composite restorations. 3M, Minneapolis, pp 377–403

    Google Scholar 

  • Boyde A (1987) Applications of the tandem scanning reflected light microscope and three dimensional imaging. Ann NY Acad Sci 483:426–440

    Google Scholar 

  • Boyde A, Fortelius M (1986) Development, structure and function of rhinoceros enamel. Zool J Linn Soc 87:181–214

    Google Scholar 

  • Boyde A, Jones SJ (1983) Backscattered electron imaging of dental tissues. Anat Embryol (Berl) 168:211–226

    CAS  Google Scholar 

  • Boyde A, Lester KS (1984) Further SEM studies of marsupial enamel. In: Fearnhead RW, Suga S (eds) Tooth Enamel IV, Elsevier, Amsterdam, pp 442–446

    Google Scholar 

  • Boyde A, Martin L (1982) Enamel microstructure determination in hominoid and cercopithecoid Primates. Anat Embryol (Berl) 165:193–212

    CAS  Google Scholar 

  • Boyde A, Martin L (1984a) The microstructure of primate dental enamel. In: Chivers DJ, Wood BA, Bilsborough A (eds) Food acquisition and processing in primates. Plenum, New York, pp 341–367

    Google Scholar 

  • Boyde A, Martin L (1984b) A non-destructive survey of prism packing patterns in primate enamels. In: Fearnhead RW, Suga S (eds) Elsevier, Amsterdam, pp 417-421

    Google Scholar 

  • Boyde A, Martin L (1987) Tandem scanning reflected light microscopy of primate enamel. Scan Electron Microsc 1:1935–1948

    CAS  Google Scholar 

  • Boyde A, Pawley JB (1975) Transmission electron microscopy of ion erosion thinned hard tissues. In: Pors Nielsen S, Hjortfng-Hansen E (eds) Calcified tissues. FADL’s, Copenhagen, pp 117–123

    Google Scholar 

  • Boyde A, Reid SA (1983) New methods for cathodoluminescence in the scanning electron microscope. SEM/1983/IV: 1803–1814

    Google Scholar 

  • Boyde A, Reith EJ (1976) Scanning electron microscopy of the lateral surfaces of rat incisor ameloblast. J Anat 122:603–610

    PubMed  CAS  Google Scholar 

  • Boyde A, Reith EJ (1977) Scanning electron microscopy of rat maturation ameloblasts. Cell Tissue Res 178:221–228

    PubMed  CAS  Google Scholar 

  • Boyde A, Reith EJ (1978) Electron probe analysis of maturation ameloblasts of the rat incisor and calf molar. Histochemistry 55:41–48

    PubMed  CAS  Google Scholar 

  • Boyde A, Reith EJ (1979) A correlated scanning and transmission electron microscope study of maturation ameloblasts in developing molar teeth of rats. J Anat 197:421–431

    Google Scholar 

  • Boyde A, Reith EJ (1981) Display of maturation cycles in rat incisor enamel with tetracycline labelling. Histochemistry 72:551–561

    PubMed  CAS  Google Scholar 

  • Boyde A, Reith EJ (1982) In vitro histological and tetracycline staining properties of surface layer rat incisor enamel also reflect the cyclical nature of the maturation process. Histochemistry 75:341–351

    PubMed  CAS  Google Scholar 

  • Boyde A, Reith EJ (1983) Cyclical uptake pattern of tetracycline in post-secretory maturation phase enamel demonstrated in rooted teeth. Calcif Tissue Res 35:762–766

    CAS  Google Scholar 

  • Boyde A, Stewart ADG (1962) A study of the etching of dental tissues with argon ion beams. J Ultrastruct Res 7:159–172

    PubMed  CAS  Google Scholar 

  • Boyde A, Switsur VR, Fearnhead RW (1961) Application of the scanning electron-probe X-ray microanalyser to dental tissues. J Ultrastruct Res 5:201–207

    PubMed  CAS  Google Scholar 

  • Boyde A, Jones SJ, Reynolds PS (1978) Quantitative and qualitative studies of enamel etching with acid and EDTA. SEM/1978/11:991–1002

    Google Scholar 

  • Boyde A, Petran M, Hadravsky M (1982) Tandem scanning reflected light microscopy of internal features in whole bone and tooth samples. J Microsc 132:1–7

    Google Scholar 

  • Braden M (1976) Biophysics of the tooth. In: Kawamura M (ed) Frontiers of oral physiology, vol 2. Karger, Basel, pp 1–37

    Google Scholar 

  • Brown WE, Chow LC, Siew C, Gruninger S (1984) Acidic calcium phosphate precursors in formation of enamel mineral. In: Fearnhead RW, Suga S (eds) Tooth enamel IV. Elsevier, Amsterdam, pp 8–13

    Google Scholar 

  • Carlson SJ, Krause DW (1985) Enamel ultrastructure of multituberculate mammals: An investigation of variability. Contr Mus Paleontol Univ Michigan 27:1–50

    Google Scholar 

  • Carlstrom D (1963) Polarization microscopy of dental enamel with reference to incipient carious lesions. Adv Oral Biol 1:255–295

    Google Scholar 

  • Carlstrom D, Glas JE (1963) Studies on the ultrastructure of dental enamel. J Ultrastruct Res 8:1–11

    PubMed  CAS  Google Scholar 

  • Carter JT (1922) On the structure of the enamel in the primates and some other mammals. Proc Zool Soc (Lond) 2:599–608

    Google Scholar 

  • Cooper JS, Poole DFG (1973) The dentition and dental tissues of the agamid lizard, Uromastyx. J Zool 169:85–100

    Google Scholar 

  • Cooper WEG (1967) A microchemical investigation of the mineralisation of dental enamel in the pig. Caries Res 1:174–184

    PubMed  CAS  Google Scholar 

  • Cooper WEG (1968) A microchemical, microradiographic and histological investigation of amelogenesis in the pig. Arch Oral Biol 13:27–44

    PubMed  CAS  Google Scholar 

  • Crabb HSM (1959) The pattern of mineralisation of human dental enamel. Proc Roy Soc Med 52:118–122

    PubMed  CAS  Google Scholar 

  • Crabb HSM (1968) Structural patterns in human dental enamel revealed by the use of microradiography in conjunction with two dimensional microdensitometry. Caries Res 2:235–252

    PubMed  CAS  Google Scholar 

  • Crabb HSM, Darling AI (1960) The gradient of mineralisation in developing enamel. Arch Oral Biol 2:308–318

    PubMed  CAS  Google Scholar 

  • Crabb HSM, Darling AI (1962) The pattern of progressive mineralisation in human dental enamel. Pergamon, Oxford

    Google Scholar 

  • Crenshaw MA, Bawden JW (1984) Proteolytic activity in embryonic bovine secretory enamel. In: Fearnhead RW, Suga S (eds) Tooth enamel IV. Elsevier, Amsterdam, pp 109–113

    Google Scholar 

  • Crenshaw MA, Takano Y (1982) Mechanisms by which the enamel organ controls calcium entry into developing enamel. J Dent Res 61:1574–1579

    CAS  Google Scholar 

  • Daculsi G, Kerebel B, (1978) High resolution electron microscope study of human enamel crystallites: size, shape and growth. J Ultrastructure Res 65:163–172

    CAS  Google Scholar 

  • Daculsi G, Menanteau J, Kerebel LM, Mitre D (1984) Enamel crystals: shape, length, and growing process; high resolution TEM and biochemical study. In: Fearnhead RW, Suga S (eds) Tooth enamel IV. Elsevier, Amsterdam, pp 14–18

    Google Scholar 

  • Darling AI (1958) Studies of the early lesion of enamel caries. Br Dent J 105:119–135

    Google Scholar 

  • Darling AI (1961) The selective attack of caries on the dental enamel. Ann R Coll Surg Engl 29:354–369

    PubMed  CAS  Google Scholar 

  • Dauphin Y (1987a) Implications of preparation processes on the interpretation of reptilian enamel structure. Palaont Z 61:331–337

    Google Scholar 

  • Dauphin Y (1987b) Premier bilan de l’etude de la structure de l’email dentaire chez les reptiles fossiles et actuels. CR Acad Sci (Paris) 305/11:1217–1219

    Google Scholar 

  • Dean MC (1987) Growth layers and incremental markings in hard tissues; a review of the literature and some preliminary observations about enamel structure in Paranthropus boisei. J Human Evolution 16:157–172

    Google Scholar 

  • De la Hire (1699) Sur les dents. Hist Acad Roy des Sci (Paris) 41-43

    Google Scholar 

  • Deutsch D, Peer E (1982) Development of enamel in human fetal teeth. J Dent Res 61:1543–1551

    CAS  Google Scholar 

  • Deutsch D, Shapira L, Alayof TA, Leviel D, Yoeli Z, Arad A (1984) Protein and mineral changes during prenatal and postnatal development and mineralization of human deciduous enamel. In: Fearnhead RW, Suga S (eds) Tooth enamel IV. Elsevier, Amsterdam, pp 234–239

    Google Scholar 

  • Dostal A (1987) Rasterelektronenmikroskopischer Vergleich der Zahnschmelzprismen hōherer Primaten. Dissertation, Universitaät Wien

    Google Scholar 

  • Eastoe JE (1982) Enamel protein chemistry. Past, present and future. J Dent Res 58B: 753–763

    Google Scholar 

  • Ebner V von (1903) Über die Kittsubstanz der Schmelzprismen. Dtsch Monatschr Zahnheilk 21:505–529

    Google Scholar 

  • Ebner V von (1906) Über die histologischen Verãnderungen des Zahnschmelzes während der Erhärtung, insbesondere beim Menschen. Arch Mikr Anat 67:18–81

    Google Scholar 

  • Elliott JC (1965) The interpretation of the infra-red absorption spectra of some carbonate containing apatites. In: Fearnhead RW, Stack MV (eds) Tooth enamel [1964]. Wright, Bristol, pp 20–22 and 50-58

    Google Scholar 

  • Elliott JC (1969) Recent progress in the chemistry, crystal chemistry and structure of the apatites. Calcif Tissue Res 3:293–307

    PubMed  CAS  Google Scholar 

  • Elwood WK, Bernstein MH (1968) The ultrastructure of the enamel organ related to enamel formation. Am J Anat 122:73–94

    PubMed  CAS  Google Scholar 

  • Fearnhead RW (1960) Mineralisation of rat enamel. Nature 188:509–510

    PubMed  CAS  Google Scholar 

  • Fearnhead RW (1961) Electron microscopy of forming enamel. Arch Oral Biol 4:pp 24–28

    PubMed  CAS  Google Scholar 

  • Fearnhead RW, Elliott JC (1962) Observations on the relationship between the inorganic and organic phases in dental enamel. In: Fifth International Congress for Electron Microscopy. Academic, New York, paper QQ7

    Google Scholar 

  • Fincham A (1984) Amelogenins: progress and problems. In: Fearnhead RW, Suga S (eds) Tooth enamel IV. Elsevier, Amsterdam, pp 114–119

    Google Scholar 

  • Fleming HS (1961) Transitional ameloblastic activity zone in mice teeth. J Dent Res 40:268–281

    Google Scholar 

  • Fortelius M (1984) Vertical decussation of enamel prisms in lophodont ungulates. In: Fearnhead RW, Suga S (eds) Tooth enamel IV. Elsevier, Amsterdam, pp 427–431

    Google Scholar 

  • Fortelius M (1985) Ungulate cheek teeth: developmental, functional, and evolutionary interrelations. Acta Zool Fenn 180:1–76

    Google Scholar 

  • Fosse G (1968a) A quantitative analysis of the numerical density and the distributional pattern of prisms and ameloblasts in dental enamel and tooth germs. Acta Odontol Scand 26:285–336

    PubMed  CAS  Google Scholar 

  • Fosse G (1968b) A quantitative analysis of the numerical density and the distributional pattern of prisms and ameloblasts in dental enamel and tooth germs. Acta Odontol Scand 26:409–433

    PubMed  CAS  Google Scholar 

  • Fosse G (1968c) A quantitative analysis of the numerical density and the distributional pattern of prisms and ameloblasts in dental enamel and tooth germs. Acta Odontol Scand 26:501–603

    PubMed  CAS  Google Scholar 

  • Frank RM (1968) Etude ultrastructurale de la dentinogenese et de la amélogènese. These présentèe pour le doctorat en chirurgie dentaire, Faculté de Médecine de Strasbourg, France

    Google Scholar 

  • Frazier PD (1968) Adult Human Enamel: An electron microscopic study of crystallite size and morphology. J Ultrastruct Res 22:1–11

    PubMed  CAS  Google Scholar 

  • Gantt DG (1979) A method of interpreting enamel prism patterns. SEM/1979/II: 975–981

    Google Scholar 

  • Gantt DG, Pilbeam DR, Steward GP (1977) Hominoid enamel prism patterns. Science 198:1155–1157

    PubMed  CAS  Google Scholar 

  • Garant PR (1972) The demonstration of complex gap junctions between the cells of the enamel organ with lanthanum nitrate. J Ultrastruct Res 40:333–348

    PubMed  CAS  Google Scholar 

  • Garant PR, Nagy A, Cho MI (1983) A freeze fracture study of ruffle ended post secretory ameloblasts. J Dent Res 63:622–628

    Google Scholar 

  • Garant PR, Sasaki T, Colflesh DE (1988) Na — K—ATPase in enamel organ: Its location and roles in enamel maturation. Adv Dent Res (in press 1988)

    Google Scholar 

  • Gasser RF, Scheving LE, Pauly JE (1972) Circadian rhythms in the cell division of the inner enamel epithelium and in the uptake of 3H-thymidine by the root tip of rat incisors. J Dent Res 51:740–746

    PubMed  CAS  Google Scholar 

  • Glas JE (1962) The orientation of the apatite crystallites as deduced from X-ray diffraction. Arch Oral Biol 7:91–104

    PubMed  CAS  Google Scholar 

  • Glas JE, Nylen MU (1965) A correlated electron microscopic and microradiographic study of human enamel. Arch Oral Biol 10:893–908

    PubMed  CAS  Google Scholar 

  • Glimcher MJ, Daniel EJ, Travis DF, Kamhi S (1965) Electron optical and X-ray diffraction studies of the organisation of the inorganic crystals in embryonic bovine enamel. J Ultrastruct Res 7:1–77

    Google Scholar 

  • Glimcher MJ, Brickley-Parsons D, Levine PT (1977) Studies of enamel proteins during maturation. Calcif Tissue Res 24:259–270

    PubMed  CAS  Google Scholar 

  • Goldberg M, Sasaki T (1985) Intramembrane particle distribution on the plasma membrane of ruffle-ended and smooth ended maturation ameloblasts of the rat incisors. J Biol Buccale 13:251–260

    PubMed  CAS  Google Scholar 

  • Goldberg M, Genotelle-Septier, Molon-Noblot M, Weill R (1979) Maturation tardive de l’émail dentaire humain. J Biol Buccale 7:353–363

    PubMed  CAS  Google Scholar 

  • Goldberg M, Carreau JP, Arends J (1987) Biochemical and scanning electron microscope study of lipids chloroform methanol extracted from unerupted and erupted human tooth enamel. Arch Oral Biol 32:765–772

    PubMed  CAS  Google Scholar 

  • Graver HT, Herold RC, Chung TY, Christner PJ, Pappas C, Rosenbloom (1978) Immunofluorescent localisation of amelogenins in developing bovine teeth. Dev Biol 63:390–401

    PubMed  CAS  Google Scholar 

  • Grine FE, Krause DW, Fosse G, Jungers WL (1987) Analysis of individual, intraspecific and interspecific variability in quantitative parameters of caprine tooth enamel structure. Acta Odontol Scand 45:1–23

    PubMed  CAS  Google Scholar 

  • Grove CA, Judd G, Ansell GS (1972) Determination of hydroxyapatite crystallite size in human dental enamel by dark-field electron microscopy. J Dent Res 51:22–27

    PubMed  CAS  Google Scholar 

  • Gustafson AG (1955) The similarity between contralateral pairs of teeth. Odont Tidskr 63:245–248

    CAS  Google Scholar 

  • Gustafson AG (1959) A morphologic investigation of certain variations in the structure and mineralisation of human dental enamel. Odont Tidskr 67:361–472

    Google Scholar 

  • Gustafson G (1945) The structure of human dental enamel. A histological study by means of incident light, polarized light, phase contrast microscopy, fluorescence microscopy and micro-hardness tests. Odont Tidskr [Suppl] 53:1–150

    Google Scholar 

  • Gustafson G (1957) The histopathology of caries of human dental enamel. Acad Odont Scand 15:13–55

    Google Scholar 

  • Gustafson G, Gustafson AG (1961) Human dental enamel in polarized light and contact microradiography. Acta Odont Scand 19:259–287

    PubMed  CAS  Google Scholar 

  • Gustafson G, Gustafson AG (1967) Microanatomy and histochemistry of enamel. In: Miles AEW (ed) Structural and chemical organisation of teeth, vol 2. Academic, New York, pp 75–134

    Google Scholar 

  • Gustafson G, Gustafson AG (1968) A new concept of dental enamel structure and formation. Odont Revy 19:265–270

    CAS  Google Scholar 

  • Gustavsen F, Silness J (1969) Crystal shape in the prism sheath region of sound human enamel. Acta Odont Scand 27:617–629

    PubMed  CAS  Google Scholar 

  • Gysi A (1931) Metabolism in adult enamel. The Dental Digest 37:661–668

    Google Scholar 

  • Hallsworth AS, Robinson C, Weatherell JA (1972) Mineral and magnesium distribution within the approximal carious lesion of dental enamel. Caries Res 6:156–168

    PubMed  CAS  Google Scholar 

  • Hallsworth AS, Weatherell J A, Robinson C (1973) Loss of carbonate during the first stages of enamel caries. Caries Res 7:345–348

    PubMed  CAS  Google Scholar 

  • Hals E (1957) Hypocalcification of the enamel. Investigation of three cases. Acta Odont Scand 15:177–198

    Google Scholar 

  • Hammarlund-Essler E (1958) A microradiographic-microphotometric and X-ray diffraction study of human developing enamel. Trans Roy Schools Dentistry Stockholm & Umea 4:15–25

    Google Scholar 

  • Helmcke JG (1953) Atlas des menschlichen Zahnes im elektronenmikroskopischen Bild. 1. Teil, Histologic des normalen Zahnes. Berlin, Transmare Photo GMBH

    Google Scholar 

  • Helmcke JG (1955) Electronenmikroskopische Strukturuntersuchungen an gesunden und kranken Zähnen. Dtsch Zahnarztl Z 10:1461–1478

    Google Scholar 

  • Helmcke JG, Schulz L, Scott DB (1963) Querstreifung der menschlichen Schmelzprismen. Dtsch Zahnärztl Z 18:569–637

    Google Scholar 

  • Hinrichsen CFL, Engel MB (1966) Fine structure of partially demineralised enamel. Arch Oral Biol 2:65–93

    Google Scholar 

  • Hodde KC, Boyde A, Reid SA, Reith EJ, Schmid MJ (1983) The vascular architecture of the rat incisor enamel organ. Beitr Elektronemikroskop Direktabb Oberfl 16:431–443

    Google Scholar 

  • Hunter J (1770) The natural history of the human teeth: explaining their structure, use, formation, growth and diseases. Johnson, London

    Google Scholar 

  • Huszar G (1971) Observations sur l’épaisseur de l’émail. Bull Group Int Rech Sci Stomatol Odontol 14:155–167

    CAS  Google Scholar 

  • Ishiyama M (1984) Comparative histology of tooth enamel in several toothed whales. In: Fearnhead RW, Suga S (eds) Tooth enamel IV. Elsevier, Amsterdam, pp 432–436

    Google Scholar 

  • Ishiyama M (1987) Enamel structure in odontocete whales. Scanning Microsc 1:1071–1079

    PubMed  CAS  Google Scholar 

  • Iwaku F, Ozawa H (1979) Blood supply of the rat periodontal space during amelogenesis as studied by the injection replica SEM method. Arch Histol Jpn 42:81–88

    PubMed  CAS  Google Scholar 

  • Jayasinghe JAP (1987) A study of the incidence and the histology of brochs. M.Sc. Thesis, University College London

    Google Scholar 

  • Johansen E (1964) Microstructure of enamel and dentin. J Dent Res 6:1007–1020

    Google Scholar 

  • Johnson NW (1967) Some aspects of the ultrastructure of early human enamel caries seen with the electron microscope. Arch Oral Biol 12:1505–1521

    PubMed  CAS  Google Scholar 

  • Jones SJ (1972a) The tooth surface in periodontal disease. The Dental Practitioner and Dental Record 22:462–473

    PubMed  CAS  Google Scholar 

  • Jones SJ (1972b) Calculus on human teeth. Apex (Journal of the Dental School of University College Hospital, London) 6:1–5

    Google Scholar 

  • Jones SJ (1974) Ph.D. Thesis, available from Senate House Library, University of London

    Google Scholar 

  • Jones SJ, Boyde A (1974) Coronal cementogenesis in the horse. Arch Oral Biol 19:605–614

    PubMed  CAS  Google Scholar 

  • Jones SJ, Boyde A (1987) Scanning microscopic observations on dental caries. Scanning Electron Microsc 1:1991–2002

    CAS  Google Scholar 

  • Jongebloed WL, Molenaar I, Arends J (1975) Morphology and size distribution of sound and acidtreated enamel crystals. Calcif Tissue Res 19:109–123

    PubMed  CAS  Google Scholar 

  • Josephsen K (1984) Lanthanum tracer study of permeability of ameloblast junctional complexes in maturation zone of rat incisor enamel organ. In: Fearnhead RW, Suga S (eds) Tooth enamel IV. Elsevier, Amsterdam, pp 251–255

    Google Scholar 

  • Josephsen K, Fejerskov O (1977) Ameloblast modulation in the maturation zone of the rat incisor enamel organ. A light and electron microscope study. J Anat 124:45–70

    PubMed  CAS  Google Scholar 

  • Kakei M, Nakahara H (1983a) A light microscopic study of the localization of carbonic anhydrase activity in the developing dentin and enamel of the rat lower incisor. Jap J Oral Biol 25:374–377

    CAS  Google Scholar 

  • Kakei M, Nakahara H (1983b) Immunological relationship between carbonic anhydrase isoenzyme C and immature enamel matrix proteins of the rat incisor. Jap J Oral Biol 25:1125–1128

    CAS  Google Scholar 

  • Kallenbach E (1968) Fine structure of rat incisor ameloblasts during enamel maturation. J Ultrastruct Res 22 :90–119

    PubMed  CAS  Google Scholar 

  • Kallenbach E (1970) Fine structure of rat incisor enamel organ during late pigmentation and regression stages. J Ultrastruct Res 30:38–63

    PubMed  CAS  Google Scholar 

  • Kallenbach E (1973) The fine structure of Tomes’ process of rat incisor ameloblasts and its relationship to the elaboration of enamel. Tissue Cell 5:501–524

    PubMed  CAS  Google Scholar 

  • Kallenbach E (1974) Fine structure of rat incisor ameloblasts in transition between enamel secretion and maturation stages, Tissue Cell 6:173–190

    PubMed  CAS  Google Scholar 

  • Kallenbach E (1977) Fine structure of secretory ameloblasts in the kitten. Am J Anat 148:479–512

    PubMed  CAS  Google Scholar 

  • Kallenbach E (1980) Access of horseradish peroxidase (HRP) to the extracellular spaces of the maturation zone of the rat incisor enamel organ. Tissue Cell 12:165–174

    PubMed  CAS  Google Scholar 

  • Kallenbach E, Clermont Y, LeBlond CP (1965) The cell web in the ameloblasts of the rat incisor. AnatRec 153:55–70

    CAS  Google Scholar 

  • Katchburian E, Holt SJ (1972) Studies on the development of ameloblasts. 1. Fine structure. J Cell Sci 11:415–447

    PubMed  CAS  Google Scholar 

  • Kawai N (1955) Comparative anatomy of the bands of Schreger. Okajimas Folia Anat Jpn 27:115–131

    PubMed  CAS  Google Scholar 

  • Kollar EJ, Fisher C (1980) Tooth induction in chick epithelium: Expression of quiescent genes for enamel synthesis. Science 207:993–995

    PubMed  CAS  Google Scholar 

  • Korvenkontio A (1934-35) Mikroskopische Untersuchungen an Nagerincisiven unter Hinweis auf die Schmelzstruktur der Backenzahne. Histologisch-phyletische Studie. Annal Zool Soc Zool-Bot Fenn Vanamo (Helsinki) 2:1–274

    Google Scholar 

  • Kurahashi Y, Moe H (1969) Electron microscopy of the ameloblasts in the later stage of the matrix formation stage and in the maturation stage of the enamel in rat. In: Araya S (ed) Hard Tissue Research. Ishiyaku, Tokyo, pp 256–285

    Google Scholar 

  • Langdon DJ, Elliott JC, Fearnhead RW (1980) Microradiographic observation of acidic subsurface decalcification in synthetic apatite aggregates. Caries Res 14:359–366

    PubMed  CAS  Google Scholar 

  • Lester KS (1965) The bands of Schreger, the role of reflexion. Arch Oral Biol 10:361–371

    PubMed  CAS  Google Scholar 

  • Lester KS (1971) On the nature of “fibrils” and tubules in developing enamel of the opossum, Didelphis marsupialis. J Ultrastruct Res 30:64–77

    Google Scholar 

  • Lester KS (1988 - submitted) Procerberus enamel: a missing link

    Google Scholar 

  • Lester KS, Boyde A (1967a) Some observations on the enamel dentine junction. J Dent Res 46:1286 Abst

    Google Scholar 

  • Lester KS, Boyde A (1967b) The structure and development of marsupial enamel tubules. Z Zellforsch 82:558–576

    PubMed  Google Scholar 

  • Lester KS, Boyde A (1987) Relating developing surface to adult ultrastructure in chiropteran enamel by SEM. Adv Dent Res 1:181–190

    PubMed  CAS  Google Scholar 

  • Lester KS, Boyde A, Gilkeson C, Archer M (1987) Marsupial and monotreme enamel structure. Scan Electron Microsc 1:401–420

    CAS  Google Scholar 

  • Lenz H (1956) Elektronenmikroskopische Untersuchungen bei beginnender Schmelzcaries. Zahnarztl Rundschau 65:285–289

    Google Scholar 

  • Linden LA (1968) Microscopic observations of fluid flow through enamel in vitro. Odont Revy 19:1–17

    Google Scholar 

  • Listgarten MA (1966) Phase-contrast and electron microscopic study of the junction between reduced enamel epithelium and enamel in unerupted human teeth. Arch Oral Biol 11:999–1016

    PubMed  CAS  Google Scholar 

  • Lumsden AGS (1979) Pattern formation in the molar dentition of the mouse. J Biol Buccale 7:77–103

    PubMed  CAS  Google Scholar 

  • Lyon DG, Darling AI (1957) Orientation of the crystallites in human dental enamel. Br Dent J 102:483–488

    Google Scholar 

  • Mannerberg F (1960) Appearance of tooth surface as observed in shadowed replicas. Odont Revy [Suppl] 11:6

    Google Scholar 

  • Mannerberg F (1964) The incipient carious lesion as observed in shadowed replicas (en face pictures) on the same teeth. Acta Odont Scand 22:343–363

    PubMed  CAS  Google Scholar 

  • Mannerberg F (1968) Appearance of the tooth surface of teeth showing dental fluorosis as observed by shadowed replicas. Odont Revy 19:271–291

    CAS  Google Scholar 

  • Martin LB (1983) The relationships of the later miocene Hominoidea. Ph.D. Thesis, available from Senate House Library, University of London

    Google Scholar 

  • Martin L, Boyde A (1984) Rates of enamel formation in relation to enamel thickness in hominoid primates. In: Fearnhead RW, Suga S (eds) Tooth enamel IV. Elsevier, Amsterdam, pp 447–451

    Google Scholar 

  • Martin L, Boyde A, Grine F (1988) SEM of primate enamel. Scanning Microsc (in press)

    Google Scholar 

  • Meckel AH, Griebstein WJ, Neal RJ (1965) Structure of mature human dental enamel as observed by electron microscopy. Archs Oral Biol 10:775–783

    CAS  Google Scholar 

  • Moe H (1971) Morphological changes in the infranuclear portion of the enamel producing cells during their life cycle. J Anat 108:43–66

    PubMed  CAS  Google Scholar 

  • Moe H (1981) Adaptation of arterioles to moving capillaries. Acta Anat (Basel) 109:369–377

    CAS  Google Scholar 

  • Mummery JH (1916) On the structure and arrangement of the enamel prisms, especially as shown in the enamel of the elephant. Proc Roy Soc Med 9:121–138

    PubMed  CAS  Google Scholar 

  • Nalbandian J, Frank RM (1962) Microscopie electronique des gaines, des structures prismatiques et interprismatiques de l’email foetal humain. Bull Group Int Rech Sci Stomatol 5:523–542

    Google Scholar 

  • Nanci A, Warshawsky H (1984a) Characterization of putative secretory sites on ameloblast of the rat incisor. Am J Anat 171:163–189

    PubMed  CAS  Google Scholar 

  • Nanci A, Warshawsky H (1984b) Relationship between the quality of fixation and the presence of stippled material in newly formed enamel of the rat incisor. Anat Rec 208:15–31

    PubMed  CAS  Google Scholar 

  • Nanci A, Bendayan M, Slavkin HC (1984) Distribution of enamel protein antigens during mouse incisor amelogenesis as revealed by high resolution immunocytochemistry. In: Fearnhead RW, Suga S (eds) Tooth enamel IV. Elsevier, Amsterdam, pp 141–145

    Google Scholar 

  • Nanci A, Slavkin HC, Smith CE (1988) Application of high resolution immunocytochemistry to the study of the secretory, resorptive and degradative functions of ameloblasts. Adv Dent Res (in press 1988)

    Google Scholar 

  • Nasmyth A (1839) Researches on the development, structure and diseases of the teeth. Churchill, London, 165 pp

    Google Scholar 

  • Newman HN, Poole DFG (1974) Observations with scanning and transmission electron microscopy on the structure of human surface enamel. Arch Oral Biol 19:1135–1143

    PubMed  CAS  Google Scholar 

  • Nishikawa S, Josephsen K (1987) Cyclic localisation of actin and its relationship to junctional complexes in maturation ameloblasts of the rat incisor. Anat Rec 219:21–31

    PubMed  CAS  Google Scholar 

  • Nishikawa S, Kitamura H (1983) Actin filaments in the ameloblast of the rat incisor. Anat Rec 207:245–252

    PubMed  CAS  Google Scholar 

  • Nylen MU, Eanes ED, Omnell KA (1963) Crystal growth in rat enamel. J Cell Biol 18:109–123

    PubMed  CAS  Google Scholar 

  • Orams HJ (1976) Ultrastructural study of human dental enamel using selected area argon ion beam thinning. Arch Oral Biol 21:663–675

    PubMed  CAS  Google Scholar 

  • Osborn JW (1965) The nature of the Hunter-Schreger bands of enamel. Arch Oral Biol 10:929–933

    PubMed  CAS  Google Scholar 

  • Osbora JW (1968a) Evaluation of previous assessments of prism directions in human enamel. J Dent Res 47:217–222

    Google Scholar 

  • Osborn JW (1968b) Directions and interrelationship of prisms in cuspal and cervical enamel of human teeth. J Dent Res 47:395–402

    CAS  Google Scholar 

  • Osborn JW (1969) The 3-dimensional morphology of the tufts in human enamel. Acta Anat (Basel) 73:481–495

    CAS  Google Scholar 

  • Osborn JW (1971) The relationship between the optical density of prism borders in dog tooth enamel and the angle from which they are viewed. Arch Oral Biol 16:1055–1059

    PubMed  CAS  Google Scholar 

  • Osborn JW, Roberts AM (1971) Optical fringe effects at prism borders in human rooth enamel sections. J Microsc 93:123–128

    PubMed  CAS  Google Scholar 

  • Palamara J, Phakey PP, Rachinger WA, Orams HJ (1981) Electron microscope study of the dentine enamel junction of kangaroo teeth using selected area argon ion beam thinning. Cell Tissue Res 221:405–419

    PubMed  CAS  Google Scholar 

  • Petran M, Hadravsky M, Boyde A (1985) The tandem scanning reflected light microscope. Scanning 7:97–108

    Google Scholar 

  • Phakey PP, Orams HJ, Palamara J, Rachinger WA (1984) Macropodinae enamel ultrastructure. In: Fearnhead RW, Suga S (eds) Tooth enamel IV. Elsevier, Amsterdam, pp 452–456

    Google Scholar 

  • Poole DFG (1956) The structure of the teeth of some mammal-like reptiles. Quart J Microsc Sci 97:303–312

    Google Scholar 

  • Poole DFG (1966) The use of the microscope in dental research. Br Dent J 121:71–79

    Google Scholar 

  • Poole DFG, Brooks AW (1961) The arrangement of crystallites in enamel prisms. Arch Oral Biol 5:14–26

    PubMed  CAS  Google Scholar 

  • Poole DFG, Johnson NW (1967) The effects of different demineralizing agents on human enamel surfaces studied by scanning electron microscopy. Arch Oral Biol 12:1621–1634

    PubMed  CAS  Google Scholar 

  • Reid SA, Boyde A, Reith EJ (1984) Cyclical phenomena occurring during the maturation of the enamel of rat incisor teeth. Histochemistry 81:521–524

    PubMed  CAS  Google Scholar 

  • Reith EJ (1961) The ultrastructure of ameloblasts during matrix formation and the maturation of enamel. J Biophys Biochem Cytol 9:825–840

    PubMed  CAS  Google Scholar 

  • Reith EJ (1963) The ultrastructure of ameloblasts during early stages of maturation of enamel. J Cell Biol 18:691–696

    PubMed  CAS  Google Scholar 

  • Reith EJ (1970) The stages of amelogenesis as observed in molar teeth of young rats. J Ultrastruct Res 30:111–151

    PubMed  CAS  Google Scholar 

  • Reith EJ, Boyde A (1981a) The arrangement of ameloblasts on the surface of maturing enamel of the rat incisor tooth. J Anat 133:381–388

    PubMed  CAS  Google Scholar 

  • Reith EJ, Boyde A (1981b) Autoradiographic evidence of cyclical entry of calcium into maturing enamel of the rat incisor tooth. Arch Oral Biol 26:983–987

    PubMed  CAS  Google Scholar 

  • Reith EJ, Boyde A (1985) The pyroantimonate reaction and transcellular transport of calcium in the rat molar enamel organ. Histochemistry 83:539–543

    PubMed  CAS  Google Scholar 

  • Reith EJ, Cotty VF (1962) Autoradiographic studies on calcification of enamel. Arch Oral Biol 7:365–372

    PubMed  CAS  Google Scholar 

  • Reith EJ, Ross MH (1973) Morphological evidence for the presence of contractile elements in the secretory ameloblast of the rat. Arch Oral Biol 18:445–448

    PubMed  CAS  Google Scholar 

  • Reith EJ, Boyde A, Schmid MJ (1982) Correlation of rat incisor ameloblasts with maturation cycles as displayed on enamel surface with EDTA. J Dent Res 61:1563–1573

    Google Scholar 

  • Reith EJ, Schmid MJ, Boyde A (1984) Rapid uptake of calcium in maturing enamel of rat incisor. Histochemistry 80:409–410

    PubMed  CAS  Google Scholar 

  • Rensberger MJ (1978) Scanning electron microscopy of wear and occlusal events in some small herbivores. In: Butler PM, Joysey KA (eds) Development, function and evolution of teeth. Academic, London, pp 416–438

    Google Scholar 

  • Rensberger JM, Koenigswald WV (1980) Functional and phylogenetic interpretation of enamel microstructure in rhinoceroses. Paleobiology 6:477–495

    Google Scholar 

  • Retzius A (1836) Mikroskopiska undersokningar ofver tandernas sardeles tandbenets struktur. Kongl Yetenskaps Acad Handlinger (Stockholm) [Ar] 1836:52–140

    Google Scholar 

  • Ripa LW, Gwinnett AJ, Buonocore MG (1966) The prismless outer layer of deciduous and permanent enamel. Arch Oral Biol 11:41–48

    PubMed  CAS  Google Scholar 

  • Ripa LW, Gwinnett AJ, Buonocore MG (1967) The prismless enamel surface. Microscopy with polarized light. Dent Radiogr Photogr 40:38–39

    Google Scholar 

  • Risnes S, Fosse G (1974) The origin of marsupial enamel tubules. Acta Anat (Basel) 87:275–282

    CAS  Google Scholar 

  • Robinson C, Kirkham J (1984) Enamel matrix components: alterations during development and possible interactions with the mineral phase. In: Fearnhead RW, Suga S (eds) Tooth enamel IV. Elsevier, Amsterdam, pp 261–265

    Google Scholar 

  • Robinson C, Weatherell J A, Hallsworth AS (1971) Variations in the composition of dental enamel within thin ground tooth sections. Caries Res 5:44–57

    PubMed  CAS  Google Scholar 

  • Robinson C, Lowe NR, Weatherell J A (1975) Amino acid composition, distribution and origin of tuft protein in human and bovine dental enamel. Arch Oral Biol 20:29–42

    PubMed  CAS  Google Scholar 

  • Robinson C, Lowe NR, Weatherell J A (1977) Changes in amino-acid composition of developing rat incisor enamel. Calcif Tissue Res 23:19–31

    PubMed  CAS  Google Scholar 

  • Robinson C, Fuchs P, Deutsch D, Weatherell J A (1978) Four chemically distinct stages in developing enamel from bovine incisor teeth. Caries Res 12:1–11

    PubMed  CAS  Google Scholar 

  • Robinson C, Briggs HD, Atkinson PJ, Weatherell J A (1979) Matrix and mineral changes in developing enamel. J Dent Res [Spec Issue B] 58:871–880

    CAS  Google Scholar 

  • Robinson C, Briggs HD, Atkinson PJ (1981a) Histology of enamel organ and chemical composition of adjacent enamel in rat incisors. Calcif Tissue Int 33:513–520

    PubMed  CAS  Google Scholar 

  • Robinson C, Briggs HD, Atkinson PJ, Weatherell JA (1981b) Chemical changes during formation and maturation of human deciduous enamel. Arch Oral Biol 26:1027–1033

    PubMed  CAS  Google Scholar 

  • Robinson C, Weatherell JA, Hallsworth AS (1981c) Distribution of magnesium in mature human enamel. Caries Res 15:70–77

    PubMed  CAS  Google Scholar 

  • Robinson C, Hallsworth AS, Kirkham J (1984) Distribution and uptake of magnesium by developing bovine incisor enamel. Archs Oral Biol 29:479–482

    CAS  Google Scholar 

  • Romaniuk K, Shroff FR (1965) The relationship of directional variation in the terminal portions of enamel rods to their cross sectional appearance. NZ Dent J 61:94–99

    CAS  Google Scholar 

  • Ronnholm E (1962) An electron microscopic study of the amelogenesis in human teeth. J Ultrastruct Res 6:229–303

    PubMed  CAS  Google Scholar 

  • Rosser H, Boyde A, Stewart ADG (1967) Preliminary observations of the calcium concentration in developing enamel assessed by scanning electron probe X-ray emission micro analysis. Arch Oral Biol 12:431–440

    PubMed  CAS  Google Scholar 

  • Ruch JV, Karcher-Djurieic V (1971) Mise en evidence d’un role specifique de l’epithelium adamantin dans la differenciation et le maintien des odonblastes. Ann Embryol Morph 4:359–366

    Google Scholar 

  • Sahni A (1984) The evolution of mammalian enamels: evidence from multituberculata (Allotheria, extinct); primitive whales (Archaeocete Cetacea) and early rodents. In: Fearnhead RW, Suga S (eds) Tooth Enamel IV. Elsevier, Amsterdam, pp 457–461

    Google Scholar 

  • Sasaki T (1983) Ultrastructure and cytochemistry of the Golgi apparatus and related organelles of the secretory ameloblasts of the rat incisor. Arch Oral Biol 28:895–905

    PubMed  CAS  Google Scholar 

  • Sasaki T (1984a) Morphology and function of maturation ameloblasts in kitten tooth germs. J Anat (Basel) 138:333–342

    Google Scholar 

  • Sasaki T (1984b) Endocytotic pathways at the ruffled borders of rat maturation ameloblasts. Histochemistry 80:263–268

    CAS  Google Scholar 

  • Sasaki T (1984c) Tracer, cytochemical, and freeze-fracture study of the mechanisms whereby secretory ameloblasts absorb exogeneous proteins. Acta Anat (Basel) 118:23–33

    CAS  Google Scholar 

  • Sasaki T, Garant T (1987) Mitochondrial migration and Ca—ATPase modulation in secretory ameloblasts of fasted and calcium loaded rats. Am J Anat 179:116–130

    PubMed  CAS  Google Scholar 

  • Sasaki T, Higashi S (1983) Scanning and transmission electron microscopy of developing enamel surfaces in the kitten tooth germs. J Electron Microsc (Tokyo) 32:163–171

    CAS  Google Scholar 

  • Sasaki T, Higashi S, Tachikawa T, Yoshiki S (1981) Morphogenesis of gap junctions in rat amelogenesis. J Electron Microsc (Tokyo) 30:191–197

    CAS  Google Scholar 

  • Sasaki T, Higashi S, Tachikawa T, Yoshiki S (1983) Thin section, tracer and freeze fracture study of the smooth ended maturation ameloblasts in rat incisors. Acta Anat (Basel) 117:303–313

    CAS  Google Scholar 

  • Sasaki T, Higashi S, Tachikawa T, Yoshiki S (1984) Absorptive and digestive functions of maturation ameloblasts in rat incisors. In: Fearnhead RW, Suga S (eds) Tooth enamel IV. Elsevier, Amsterdam, pp 266–270

    Google Scholar 

  • Sasaki T, Colflesh DE, Garant PR (1988a) Regulation of Ca transport by Ca-ATPase-calmodulin complex in the enamel organ. Adv Dent Res (in press 1988)

    Google Scholar 

  • Sasaki T, Yeh JH, Takagi T (1988 b) Isolation of two amelogenin peptides and their amino acid sequences. Adv Dent Res (in press 1988)

    Google Scholar 

  • Sauk JJ, Vickers RA, Copeland JS, Lyon HW (1972) The surface of genetically determined hypoplastic enamel in human teeth. Oral Surg Oral Med Oral Pathol 34:60–68

    PubMed  Google Scholar 

  • Schour I, Hoffman MM (1939) Studies in tooth development. II. The rate of apposition of enamel and dentin in man and other animals. J Dent Res 18:161–175

    Google Scholar 

  • Schreger D (1800) Beiträge zur Geschichte der Zähne. Beitr vergleich Zergliederungskunst 1:1–20

    Google Scholar 

  • Scott DB (1952) Microscopic studies of dental tissues. II. Optical microscopy of tooth surface. Oral Path 8:638–645

    Google Scholar 

  • Scott DB, Wyckoff RWG (1947) Electron microscopy of tooth structure by the shadowed collodion replica method. US Pub Hlth Reps (Washington) 62:1513–1516

    CAS  Google Scholar 

  • Selvig KA (1973) Electron microscopy of dental enamel: analysis of crystal lattice images. Z Zellforsch 137:271–280

    PubMed  CAS  Google Scholar 

  • Selvig KA, Halse A (1972) Crystal growth in rat incisor enamel. Anat Rec 153:453–468

    Google Scholar 

  • Shellis RP, Poole DFG (1979) The arrangement of prisms in the enamel of the anterior teeth of the aye-aye. Scan Electron Microsc 11:497–506

    Google Scholar 

  • Shellis RP (1984a) Inter-relationships between growth and structure of enamel. In: Fearnhead RW, Suga S (eds) Tooth enamel IV. Elsevier, Amsterdam, pp 467–471

    Google Scholar 

  • Shellis RP (1984b) Variations in growth of the enamel crown in human teeth and a possible relationship between growth and enamel structure. Arch Oral Biol 29:697–705

    PubMed  CAS  Google Scholar 

  • Shellis RP, Hallsworth AS (1987) The use of scanning electron microscopy in studying enamel caries. Scan Electron Microsc 1:1109–1123

    CAS  Google Scholar 

  • Shobusawa M (1952) Vergleichende Untersuchungen über die Form der Schmelzprismen der Säugetiere. Okajimas Folia Anat Jpn 24:371–392

    PubMed  CAS  Google Scholar 

  • Shroff FR, Romaniuk K (1964) A preliminary investigation of the surface structure of the enamel of erupted deciduous teeth. NZ Dent J 60:298–305

    Google Scholar 

  • Silness J (1969) Some variations in the microradiographic appearance of human deciduous enamel. OdontRevy 20:93–110

    CAS  Google Scholar 

  • Simmelink JW, Nygaard VK (1982) Ultrastructure of striations in carious human enamel. Caries Res 16:179–188

    PubMed  CAS  Google Scholar 

  • Skobe Z (1976) The secretory stage of amelogenesis in rat mandibular incisor teeth observed by scanning electron microscopy. Calcif Tissue Res 21:83–103

    PubMed  CAS  Google Scholar 

  • Skobe Z (1977) Enamel rod formation in the monkey observed by scanning electron microscopy. Anat Rec 187:329–334

    PubMed  CAS  Google Scholar 

  • Skobe Z, Prostak K, Stern D (1981) Ultrastructure of secretory ameloblasts in a monkey Macaca mulatta. Arch Oral Biol 26:1075–1090

    PubMed  CAS  Google Scholar 

  • Slavkin CH (1970) Epithelial mesenchymal interactions related to periodontal disease. J Periodont Res 41:5–13

    Google Scholar 

  • Slavkin HC, Brownell AG, Bringas P, MacDougall M, Bessem C (1983) Basal lamina persistence during epithelial mesenchymal interactions in murine tooth development in vitro. J Craniofac Genet Dev Biol 3:387–407

    PubMed  CAS  Google Scholar 

  • Smith CE, Warshawsky H (1977) Quantitative analysis of cell turnover in the enamel organ of the rat incisor. Anat Rec 187:63–98

    PubMed  CAS  Google Scholar 

  • Smith CE, McKee MD, Nanci A (1988) Rapid ameloblast modulation cycles. Adv Dent Res (in press)

    Google Scholar 

  • Smreker E (1905) Über die Form der Schmelzprismen menschlicher Zähne und die Kittsubstanz des Schmelzes. Arch Mikr Anat 66:312–331

    Google Scholar 

  • Suga S (1959) Amelogenesis. Histological and histochemieal observations. Int Dent J 9:394–420

    Google Scholar 

  • Suga S, Murayama Y, Musashi T (1970) A study of the mineralization process in the developing enamel of guinea pigs. Arch Oral Biol 15:597–612

    PubMed  CAS  Google Scholar 

  • Sundstrom B (1966) Schreger bands and their appearance in microradiographs of human dental enamel. Acta Odont Scand 24:179–194

    PubMed  CAS  Google Scholar 

  • Sundstrom B, Zelander T (1968) On the morphological organisation of the organic matrix of adult human enamel after decalcification by means of a basic chromium (III) sulphate solution. Odont Revy 19:1–15

    Google Scholar 

  • Swancar JR, Scott DB, Njemirovskij Z (1970) Studies on the structure of human enamel by the replica method. J Dent Res 49:1025–1033

    PubMed  CAS  Google Scholar 

  • Takano Y (1984) Remarks in discussion and fig 2:3.9. In: Fearnhead RW, Suga. S (eds) Tooth enamel IV. Elsevier, Amsterdam, p 312

    Google Scholar 

  • Takano Y, Crenshaw MA (1980) The penetration of intravascularly perfused lanthanum into the ameloblast layer of developing rat molar teeth. Arch Oral Biol 25:505–511

    PubMed  CAS  Google Scholar 

  • Takano Y, Ozawa H (1980) Ultrastructural and cytochemical observations on the alternating morphologic changes of the ameloblasts at the stage of enamel maturation. Arch Histol Jpn 43:385–399

    PubMed  CAS  Google Scholar 

  • Takano Y, Ozawa H (1984) Autoradiographic and tracer experiments on the exit route for the resorbed organic matrix of the enamel at the stage of maturation. In: Fearnhead RW, Suga S (eds) Tooth enamel IV. Elsevier, Amsterdam, pp 271–275

    Google Scholar 

  • Takano Y, Crenshaw MA, Reith EJ (1982a) Correlation of Ca incorporation with maturation ameloblast morphology in the rat incisor. Calcif Tissue Int 34:211–213

    PubMed  CAS  Google Scholar 

  • Takano Y, Crenshaw MA, Bawden JW, Hammarstrom L, Lindskog S (1982b) The visualisation of patterns of ameloblast modulation by the glyoxal bis (2-hydroxyanil) staining method. J Dent Res 61:1580–1586

    Google Scholar 

  • Thesleff I, Stenman S, Vaheri A, Timpl R (1979) Changes in the matrix proteins, fibronectin and collagen, during differentiation of mouse tooth germ. Dev Biol 70:116–126

    PubMed  CAS  Google Scholar 

  • Tobin CE (1972) Correlation of vascularity with mineralisation in human fetal teeth. Anat Rec 174:371–380

    PubMed  CAS  Google Scholar 

  • Tomes J (1849) Structure of the dental tissues of marsupial animals. Philos Trans R Soc Lond 139:403–412

    Google Scholar 

  • Tomes J (1850) On the structure of the dental tissues of the order Rodentia. Philos Trans R Soc Lond 140:529–567

    Google Scholar 

  • Triller M (1984) Fluorosis: A model to study enamel lesions. In: Fearnhead RW, Suga S (eds) Tooth enamel IV. Elsevier, Amsterdam, pp 368–372

    Google Scholar 

  • Vahl J, Plackova A (1967) Elektronenoptische Untersuchungen von braunen Schmelzfleeken (arretierte Karies). Dtsch Zahnarztl Z 22:629–630

    Google Scholar 

  • Vahl J, Hohling HJ, Plackova A, Bures H (1966) Elektronenmikroskopische Ultradiinnschnittuntersuchungen an Zahnen mit Schmelzflecken, herriihrend von initialer Karies, artifizieller Karies und Mineralisationsstorungen. Dtsch Zahnarztl Z 21:983–989

    PubMed  CAS  Google Scholar 

  • Vollrath L, Kantarjian A, Howe C (1975) Mammalian pineal gland: 7 day rhythmic activity? Experientia 31:458–460

    PubMed  CAS  Google Scholar 

  • Vrba ES, Grine FE (1978) Australopithecine enamel prism patterns. Science 202:890–892

    PubMed  CAS  Google Scholar 

  • Wakita M, Hinrichsen K (1980) Ultrastructure of the ameloblast-stratum intermedium border during ameloblast differentiation. Acta Anat (Basel) 108:10–29

    CAS  Google Scholar 

  • Wakita M, Kobayashi S (1983) The three dimensional structure of Tomes’ processes and the development of the microstructural organization of tooth enamel. In: Suga S (ed) Mechanisms of tooth enamel formation. Quintessence, Tokyo, pp 65–89

    Google Scholar 

  • Wakita M, Tsuchiya H, Gunji T, Kobayashi S (1981) Three-dimensional structure of Tomes’ processes and enamel prism formation in the kitten. Arch Histol Jpn 44:285–297

    PubMed  CAS  Google Scholar 

  • Walker A, Hoeck HN, Perez L (1978) Microwear of mammalian teeth as an indicator of diet. Science 201:908–910

    PubMed  CAS  Google Scholar 

  • Warshawsky H (1968) The fine structure of secretory ameloblasts in rat incisors. Anat Rec 161:211–230

    PubMed  CAS  Google Scholar 

  • Warshawsky H (1979) Radioautographic studies on amelogenesis. J Biol Buccale 7:105–126

    PubMed  CAS  Google Scholar 

  • Warshawsky H, Bai P (1983) Knife chatter during thin sectioning of rat incisor enamel can cause periodicities resembling cross-striations. Anat Rec 207:533–538

    PubMed  CAS  Google Scholar 

  • Warshawsky H, Josephsen K, Thylstrup A, Fejerskov A (1981) The development of enamel structure in rat incisors as compared to the teeth of monkey and man. Anat Rec 200:371–399

    PubMed  CAS  Google Scholar 

  • Warshawsky H, Bai P, Nanci A (1984a) Lack of evidence for rhythmicity in enamel development. INSERM 125:241–256

    Google Scholar 

  • Warshawsky H, Bai P, Nanci A, Josephsen K (1984b) Morphological visualisation of two categories of enamel proteins in relation to the crystals of rat incisor enamel. In: Fearnhead RW, Suga S (eds) Tooth Enamel IV. Elsevier, Amsterdam, pp 177–182

    Google Scholar 

  • Watson ML (1960) The extracellular nature of enamel in the rat. J Biophys Biochem Cytol 7:489–492

    PubMed  CAS  Google Scholar 

  • Watson ML, Avery JK (1954) The development of the hamster lower incisor as observed by electron microscopy. Am J Anat 95:109–161

    PubMed  CAS  Google Scholar 

  • Weatherell J A, Weidmann SM, Hamm SM (1967) Density patterns in enamel. Caries Res 1:42–51

    PubMed  CAS  Google Scholar 

  • Weatherell JA, Robinson C, Hiller CR (1968) Distribution of carbonate in thin sections of dental enamel. Caries Res 2:1–9

    PubMed  CAS  Google Scholar 

  • Weber DF (1973) Sheath configurations in human cuspal enamel. J Morphol 14:479–480

    Google Scholar 

  • Weber DF, Eisenmann DR (1971) Microscopy of the neonatal line in developing human enamel. Am J Anat 132:375–392

    PubMed  CAS  Google Scholar 

  • Weber DF, Glick PL (1975) Correlative microscopy of enamel prism orientation. Am J Anat 144:407–420

    PubMed  CAS  Google Scholar 

  • Weber DF, Eisenmann DR, Glick PL (1974) Light and electron microscopic studies of Retzius lines in human cervical enamel. Am J Anat 141:91–104

    PubMed  CAS  Google Scholar 

  • Weill R, Tassin MT (1965) Etude histochimique de la matrice de l’email histogenese chez le rat. Acat Histochem 22:259–282

    CAS  Google Scholar 

  • Weinstock A, Leblond CP (1971) Elaboration of the matrix glycoprotein of enamel by the secretory ameloblasts of the rat incisor as revealed by radioautography after galactose-H3 injection. J Cell Biol 51:26–51

    PubMed  CAS  Google Scholar 

  • Whittaker DK (1977) The enamel-dentine junction of human and Macaca irus teeth: a light and electron microscopic study. J Anat 125:323–335

    Google Scholar 

  • Wolf J (1940) Plastische Histologic der Zahngewebe. Deutsche Zahn Mund und Kieferheilkunde 7:507–538

    Google Scholar 

  • Wolf J (1942) Der Einfluss der Ameloblastenverschiebungen auf die Gestalt und den Verlauf der Schmelzprismen. Deutsche Zahn Mund und Kieferheilkunde 9:488–515

    Google Scholar 

  • Young MF, Shimokawa HS, Sobel ME, Termine JD (1988) A characterisation of amelogenin messenger RNA in the bovine tooth germ. Adv Dent Res (in press 1988)

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boyde, A. (1989). Enamel. In: Teeth. Handbook of Microscopic Anatomy, vol 5 / 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83496-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83496-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83498-1

  • Online ISBN: 978-3-642-83496-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics