Skip to main content

Sympathetic Influences on Arrhythmogenesis in the Ischemic Heart

  • Conference paper
Heart & Brain, Brain & Heart
  • 121 Accesses

Abstract

Myocardial ischemia frequently results in activation of the sympathetic nervous system [146], with clinical manifestations including sinus tachycardia and hypertension [158]. Of more concern than these hemodynamic alterations produced by sympathetic neural activation is the electrical instability which ensues after an ischemic event and during evolving myocardial infarction. Several lines of evidence suggest that increases in sympathetic neural activity induced by ischemia may be of primary importance in arrhythmogenesis and that stimulation of both α- and β-adrenergic receptors in the myocardium contributes to the electrophysiological derangements leading to malignant ventricular tachycardia or ventricular fibrillation resulting in sudden cardiac death. Prior to considering the electrophysiological effects of catecholamines and their relation to arrhythmogenesis in the ischemic heart, the anatomic and neurophysiological substrates underlying this relationship and the mechanisms responsible for sympathetic activation will briefly be discussed. The present review will concentrate solely on the sympathetic branch of the autonomic nervous system. The reader is referred to other reviews [31, 35] for a more detailed account of the interactions between the sympathetic and parasympathetic nervous systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahamsson T, Almgren O, Holmgren S (1982) Effects of ganglionic blockade on noradrenaline release and cell injury in the acutely ischemic rat myocardium. J Cardiovasc Pharmacol 4: 584–591

    Article  PubMed  CAS  Google Scholar 

  2. Abrahamsson J, Holmgren S, Almgren O (1982) Noradrenaline release in acute myocardial ischaemia, a fluorescence-histochemical and biochemical study. In: Parratt JR (ed) Early arrhythmias resulting from myocardial ischaemia. Mechanisms and prevention by drugs. Macmillan, London, pp 153–169

    Google Scholar 

  3. Akita H, Creer MH, Yamada KA, Sobel BE, Corr PB (1986) Electrophysiologic effects of intracellular lysophosphoglycerides and their accumulation in cardiac lymph with myocardial ischemia in dogs. J Clin Invest 78: 271–280

    Article  PubMed  CAS  Google Scholar 

  4. Amendt K, Czachurski J, Dembowsky K, Seller H (1978) Neurones within the “chemosensitive area” on the ventral surface of the brainstem which project to the intermediolateral column. Pfliigers Arch Ges Physiol 375: 289–292

    Article  CAS  Google Scholar 

  5. Amendt K, Czachurski J, Dembowsky K, Seller H (1979) Bulbospinal projections to the intermediolateral cell column; a neuroanatomical study. J Auton Nerv Syst 1:103–117

    Article  PubMed  CAS  Google Scholar 

  6. Aubry ML, Davey MJ, Petch B (1985) Cardioprotective and antidysrhythmic effects of α 1 adrenoceptor blockade during myocardial ischaemia and reperfusion in the dog. J Cardiovasc Pharmacol [Suppl 6] 7: S93–S102

    Article  PubMed  CAS  Google Scholar 

  7. Barman SM (1984) Spinal cord control of the cardiovascular system. In: Randall WC (ed) Nervous control of cardiovascular function. Oxford University Press, New York, pp 321–345

    Google Scholar 

  8. Benfey BG, Elfellah MS, Ogilvie RI, Varma DR (1984) Anti-arrhythmic effects of prazosin and propranolol during coronary artery occlusion and reperfusion in dogs and pigs. Br J Pharmacol 82: 717–725

    Article  PubMed  CAS  Google Scholar 

  9. Berger AJ (1979) Distribution of carotid sinus nerve afferent fibers to solitary tract nuclei of the cat using transganglionic transport of horseradish peroxidase. Neurosci Lett 14: 153–158

    Article  PubMed  CAS  Google Scholar 

  10. Berridge MJ, Irvine RF (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312: 315–321

    Article  PubMed  CAS  Google Scholar 

  11. Bishop VS, Malliani A, Thoren P (1983) Cardiac mechanoreceptors. In: Shepherd JT, Abboud FM (eds) Handbook of physiology, sect 2, vol 3. American Physiological Society, Bethesda, pp 677–689

    Google Scholar 

  12. Blessing WW, Reis DJ (1982) Inhibitory cardiovascular function of neurons in the caudal ventrolateral medulla of the rabbit: relationship to the area containing Al noradrenergic cells. Brain Res 253: 161–171

    Article  PubMed  CAS  Google Scholar 

  13. Bolli R, Fisher DJ, Taylor AA, Young JB, Miller RR (1984) Effect of α-adrenergic blockade on arrhythmias induced by acute myocardial ischemia and reperfusion in the dog. J Mol Cell Cardiol 16: 1101–1117

    Article  PubMed  CAS  Google Scholar 

  14. Brown AM (1979) Cardiac reflexes. In: Berne RM (ed) Handbook of physiology, sect 2, vol 1. American Physiological Society, Bethesda, pp 677–689

    Google Scholar 

  15. Brown AM (1968) Excitation of afferent cardiac sympathetic nerve fibers during myocardial ischaemia. J Physiol (Lond) 190: 35–53

    Google Scholar 

  16. Brown AM, Malliani A (1971) Spinal sympathetic reflexes initiated by coronary receptors. J Physiol (Lond) 212:685–705

    CAS  Google Scholar 

  17. Brown DL, Guyenet PG (1984) Cardiovascular neurons of brain stem with projections to spinal cord. Am J Physiol 247: R1009–R1016

    PubMed  CAS  Google Scholar 

  18. Brown JH, Buxton IL, Brunton LL (1985) α 1 Adrenergic and muscarinic cholinergic stimulation of phosphoinositide hydrolysis in adult rat cardiomyocytes. Circ Res 57: 532–537

    Article  PubMed  CAS  Google Scholar 

  19. Brückner R, Meyer W, Mugge A, Schmitz H, Scholz H (1984) Alpha-adrenoceptor-mediated positive inotropic effect of phenylephrine in isolated human ventricular myocardium. Eur J Pharmacol 99: 345–347

    Article  PubMed  Google Scholar 

  20. Brückner R, Scholz H (1984) Effects of alpha-adrenoceptor stimulation with phenylephrine in the presence of propranolol on force of contraction, slow inward current and cyclic AMP content in the bovine heart. Br J Pharmacol 82: 223–232

    Article  PubMed  Google Scholar 

  21. Casati R, Lombardi F, Malliani A (1979) Afferent sympathetic unmyelinated fibers with left ventricular endings in cats. J Physiol (Lond) 292: 135–148

    CAS  Google Scholar 

  22. Charest R, Blackmore PF, Berthon B, Exton JH (1983) Changes in free cytosolic Ca2+ in hepatocytes following α 1 adrenergic stimulation. Studies on quin-2-loaded hepatocytes. J Biol Chem 258: 8769–8773

    CAS  Google Scholar 

  23. Charest R, Prpić V, Exton JH, Blackmore PF (1985) Stimulation of inositol trisphosphate formation in hepatocytes by vasopressin, adrenaline and angiotensin II and its relationship to changes in cytosolic free Ca2+. Biochem J 227: 79–90

    PubMed  CAS  Google Scholar 

  24. Coleridge JG, Coleridge H (1979) Chemereflex regulation of the heart. In: Berne RM (ed) Handbook of physiology, sect 2, vol 1. American Physiological Society, Bethesda, pp 653–676

    Google Scholar 

  25. Colquhoun D, Neher E, Reuter H, Stevens CF (1981) Inward current channels activated by intracellular Ca in cultured cardiac cells. Nature 294: 752–754

    Article  PubMed  CAS  Google Scholar 

  26. Constantin L (1963) Extracardiac factors contributing to hypotension during coronary occlusion. Am J Cardiol 11; 205–217

    Article  Google Scholar 

  27. Corr PB, Sharma AD (1984) α-Adrenergic-mediated effects on myocardial calcium. In: Opie LH (ed) Calcium antagonists and cardiovascular disease. Raven, New York, pp 193–204

    Google Scholar 

  28. Corr PB, Gross RW, Sobel BE (1984) Amphipathic metabolites and membrane dysfunction in ischemic myocardium. Circ Res 55: 135–154

    Article  PubMed  CAS  Google Scholar 

  29. Corr PB, Shayman JA, Kramer JB, Kipnis RJ (1981) Increased α-adrenergic receptors in ischemic cat myocardium: a potential mediator of electrophysiological derangements. J Clin Invest 67: 1232–1236

    Article  PubMed  CAS  Google Scholar 

  30. Corr PB, Snyder DW, Cain ME, Crafford WA, Gross RW, Sobel BE (1981) Electrophysiological effects of amphiphiles on canine Purkinje fibers: implications for dysrhythmia secondary to ischemia. Circ Res 49: 354–363

    Article  PubMed  CAS  Google Scholar 

  31. Corr PB, Yamada KA, Witkowski FX (1986) Mechanisms controlling cardiac autonomic function and their relation to arrhythmogenesis. In: Fozzard HA, Haber E, Jennings KB, Katz AM (eds) The heart and cardiovascular system. Raven, New York, pp 1343–1403

    Google Scholar 

  32. Cottle MK (1979) Degeneration studies of primary afferents of the IXth and Xth cranial nerves in the cat. J Comp Neurol 122: 329–343

    Article  Google Scholar 

  33. Crill WE, Reis DJ (1968) Distribution of carotid sinus and depressor nerves in cat brain stem. Am J Physiol 214: 269–276

    PubMed  CAS  Google Scholar 

  34. Culling W, Penny WJ, Lewis MJ, Middleton K, Sheridan DJ (1984) Effects of myocardial catecholamine depletion on cellular electrophysiology and arrhythmias during ischaemia and reperfusion. Cardiovasc Res 18: 675–682

    Article  PubMed  CAS  Google Scholar 

  35. Dampney RAL (1981) Functional organization of central cardiovascular pathways. Clin Exp Pharmacol Physiol 8: 241–259

    Article  PubMed  CAS  Google Scholar 

  36. Daugherty A, Frayn KN, Redfern WS, Woodward B (1986) The role of catecholamines in the production of ischaemia-induced ventricular arrhythmias in the rat in vivo and in vitro. Br J Pharmacol 87: 265–277

    Article  PubMed  CAS  Google Scholar 

  37. Davey MJ (1980) Relevant features of the pharmacology of prazosin. J Cardiovasc Pharmacol 2: S287–S301

    Article  Google Scholar 

  38. DeSilva RA (1982) Central nervous system risk factors for sudden cardiac death. Ann NY Acad Sci 382: 143–161

    Article  Google Scholar 

  39. DiMicco JA, Prestel T, Pearle DL, Gillis RA (1977) Mechanism of cardiovascular changes produced in cats by activation of the central nervous system with picrotoxin. Circ Res 41:446–451

    Article  Google Scholar 

  40. Downing SE (1979) Baroreceptor regulation of the heart. In: Berne RM (ed) Handbook of physiology, sect 2, vol 1. American Physiological Society, Bethesda, pp 621–652

    Google Scholar 

  41. Dutta SN, Booker WM (1970) Possible myocardial adaption to acute coronary occlusion: relation to catecholamines. Arch Int Pharmacodyn Ther 185: 5–12

    PubMed  CAS  Google Scholar 

  42. Ebert PA, Vanderbeek RB, Allgood RJ (1970) Effect of chronic cardiac denervation on arrhythmias after coronary artery ligation. Cardiovasc Res 4: 141–147

    Article  PubMed  CAS  Google Scholar 

  43. Elharrar V, Watanabe AM, Molello J, Besch HR Jr, Zipes DP (1979) Adrenergically mediated ventricular fibrillation in probucol-treated dogs: roles of alpha and beta adrenergic receptors. PACE 2: 435–443

    Article  PubMed  CAS  Google Scholar 

  44. Eliot RS, Buell JC (1985) Role of emotions and stress in the genesis of sudden death. J Am Coll Cardiol 5:95B–98B

    Article  PubMed  CAS  Google Scholar 

  45. Fabiato A (1986) Inositol (l,4,5)-trisphosphate-induced release of Ca2+ from the sarcoplasmic reticulum of skinned cardiac cells. Biophys J 49:190a

    Google Scholar 

  46. Forssman O, Hansson G, Jensen C (1952) The adrenal function in coronary thrombosis. Acta Med Scand 142: 441–449

    Article  PubMed  CAS  Google Scholar 

  47. Fowlis RAF, Sang CTM, Lundy PM, Ahuja SP, Calhoun H (1974) Experimental coronary artery ligation in conscious dogs six months after bilateral cardiac sympathectomy. Am Heart J 88: 748–757

    Article  PubMed  CAS  Google Scholar 

  48. Frishman WH, Furberg CD, Friedewald WT (1984) β-Adrenergic blockade for survivors of acute myocardial infarction. N Engl J Med 310: 830–837

    Article  PubMed  CAS  Google Scholar 

  49. Gazes PC, Richardson JA, Woods EF (1959) Plasma catecholamine concentrations in myocardial infarction and angina pectoris. Circulation 19: 657–661

    Article  PubMed  CAS  Google Scholar 

  50. Gebber GL (1984) Brainstem systems involved in cardiovascular regulation. In: Randall WC (ed) Nervous control of cardiovascular function. Oxford University Press, New York, pp 346–368

    Google Scholar 

  51. Gillis RA (1971) Role of the nervous system in the arrhythmias produced by coronary occlusion of the cat. Am Heart J 81: 677–684

    Article  PubMed  CAS  Google Scholar 

  52. Giotti A, Ledda F, Mannaioni PF (1973) Effects of noradrenaline and isoprenaline, in combination with a- and β-preceptor blocking substances, on the action potential of cardiac Purkinje fibers. J Physiol (Lond) 229: 99–113

    CAS  Google Scholar 

  53. Godin D, Campeau N, Nadeau R, Cardinal R, de Champlain J (1985) Catecholamine release and ventricular arrhythmias during coronary occlusion and reperfusion in the dog. Can J Physiol Pharmacol 63: 1088–1095

    Article  PubMed  CAS  Google Scholar 

  54. Goldberg S, Greenspon AJ, Urban PL, Muza B, Berger B, Walinsky P, Maroko PR (1983) Reperfusion arrhythmias: a marker of restoration of antegrade flow during intracoronary thrombolysis for acute myocardial infarction. Am Heart J 105: 26–32

    Article  PubMed  CAS  Google Scholar 

  55. Goldstein DS (1981) Plasma norepinephrine as an indicator of sympathetic neural activity in clinical cardiology. Am J Cardiol 48: 1147–1154

    Article  PubMed  CAS  Google Scholar 

  56. Govier WC (1967) A positive inotropic effect of phenylephrine mediated through alpha adrenergic receptors. Life Sci 6: 1361–1365

    Article  PubMed  CAS  Google Scholar 

  57. Grizzle WE, Johnson RN, Schramm LP, Gann DS (1975) Hypothalamic cells in an area mediating ACTH release respond to right atrial stretch. Am J Physiol 228: 1039–1045

    PubMed  CAS  Google Scholar 

  58. Hageman GR, Goldberg JM, Armour J A, Randall WC (1973) Cardiac dysrhythmias induced by autonomic nerve stimulation. Am J Cardiol 32: 823–830

    Article  PubMed  CAS  Google Scholar 

  59. Hainsworth R, Kidd C, Linden RJ (1979) Cardiac receptors. Cambridge University Press, Cambridge

    Google Scholar 

  60. Han J, Moe GK (1964) Nonuniform recovery of excitability in ventricular muscle. Circ Res 14: 44–60

    Article  PubMed  CAS  Google Scholar 

  61. Heathers GP, Yamada KA, Kanter EM, Corr PB (1987) Long-chain acylcarnitines mediate the hypoxia-induced increase in alphai-adrenergic receptors on adult canine myocytes. Circ Res 61: 735–746

    Article  PubMed  CAS  Google Scholar 

  62. Heathers GP, Yamada KA, Pogwizd SM, Corr PB (1988) The contribution of α- and β-adrenergic mechanisms in the genesis of arrhythmias during myocardial ischemia and reperfusion. In: Kulbertus HE, Franck G (eds) Neurocardiology. Futura Publishing, Mount Kisco, pp 143–178

    Google Scholar 

  63. Henry JL, Calaresu FR (1974) Excitatory and inhibitory inputs from medullary nuclei projecting to spinal cardioacceleratory neurons in the cat. Exp Brain Res 20: 485–504

    PubMed  CAS  Google Scholar 

  64. Hilton SM, Spyer KM (1971) Participation of the anterior hypothalamus in the baroreceptor reflex. J Physiol (Lond) 218: 271–293

    CAS  Google Scholar 

  65. Hirche Hj, McDonald FM, Polwin W, Addicks K (1985) Vicious cycle of catecholamines and K+ in cardiac ischemia. J Cardiovasc Pharmacol [Suppl 5] 7: S71–S75

    Article  PubMed  CAS  Google Scholar 

  66. Hirche Hj, Kebbel U, McDonald FM, Knopf H, Bischoff A, Barth A (1985) Measurement of inhomogeneous changes of extracellular K+ concentration within the ischemic myocardium. In: Kessler M, Harrison DK, Höper J (eds) Ion measurements in physiology and medicine. Springer, Berlin Heidelberg New York, pp 269–273

    Chapter  Google Scholar 

  67. Hirche Hj, Addicks K, Deutsch HJ, Friedrich R, Griebenow R, McDonald FM, Zylka V (1981) The effect of lignocaine on the release of K+ and of noradrenaline from ischemic pig heart. Pflügers Arch Ges Physiol 389: R5

    Google Scholar 

  68. Hordof AJ, Rose E, Danilo P Jr, Rosen MR (1982) α- and β-adrenergic effects of epinephrine on ventricular pacemakers in dogs. Am J Physiol 242: 677–682

    Google Scholar 

  69. Idell-Wenger JA, Grotyohann LW, Neely JR (1978) Coenzyme A and carnitine distribution in normal and ischemic hearts. J Biol Chem 253: 4310–4318

    PubMed  CAS  Google Scholar 

  70. Imaizumi T, Granata AR, Sved AF, Benarroch E, Reis DJ (1983) Lesions of the Al area of rat ventrolateral medulla increase cardiac output and arterial pressure without modifying mechanoreceptor reflexes. Soc Neurosci Abstr 9: 182

    Google Scholar 

  71. Janse MJ, Schwartz PJ, Wilms-Schopman F, Peters RJG, Durrer D (1985) Effects of unilateral stellate ganglion stimulation and ablation on electrophysiologic changes induced by acute myocardial ischemia in dogs. Circulation 72: 585–595

    Article  PubMed  CAS  Google Scholar 

  72. Juhasz-Nagy A, Aviado DM (1976) Increased role of alpha-adrenoreceptors in ischemic myocardial zones. Physiologist 19: 245

    Google Scholar 

  73. Kaku T, Lakatta E, Filburn CR (1986) Effect of α 1-adrenergic stimulation on phosphoinositide metabolism and protein kinase C (PK-C) in rat cardiomyocytes. Fed Proc 45: 209

    Google Scholar 

  74. Kane KA, Parratt JR, Williams FM (1984) An investigation into the characteristics of reperfusion-induced arrhythmias in the anaesthetized rat and their susceptibility to antiarrhythmic agents. Br J Pharmacol 82: 349–357

    Article  PubMed  CAS  Google Scholar 

  75. Kass RS, Lederer WJ, Tsien RW, Weingart R (1978) Role of calcium ions in transient inward currents and aftercontractions induced by strophanthidin in cardiac purkinje fibres. J Physiol (Lond) 281: 187–298

    CAS  Google Scholar 

  76. Kelliher GJ, Widmar C, Roberts J (1975) Influence of adrenal medulla on cardiac rhythm disturbances following acute coronary artery occlusion. In: Roy PE, Rona G (eds) Recent advances in cardiac structure and metabolism, vol 10. Park University Press, Baltimore, pp 387–400

    Google Scholar 

  77. Kimura S, Bassett AL, Kohya T, Kozlovskis PL, Myerburg RJ (1987) Automaticity, triggered activity, and responses to adrenergic stimulation in cat subendocardial Purkinje fibers after healing of myocardial infarction. Circulation 75: 651–660

    Article  PubMed  CAS  Google Scholar 

  78. Kliks BR, Burgess MJ, Abildskov JA (1975) Influence of sympathetic tone on ventricular fibrillation threshold during experimental coronary occlusion. Am J Cardiol 36: 45–49

    Article  PubMed  CAS  Google Scholar 

  79. Knabb MT, Saffitz JE, Corr PB, Sobel BE (1986) The dependence of electrophysiologic derangements on accumulation of endogenous long-chain acyl carnitine in hypoxic rat myocytes. Circ Res 58: 230–240

    Article  PubMed  CAS  Google Scholar 

  80. Lammerant J, Delterdt P, DeSchryver C (1966) Direct release of myocardial catecholamines into the left heart chambers; the enhancing effect of acute coronary occlusion. Arch Int Pharmacodyn Ther 163: 219–226

    PubMed  CAS  Google Scholar 

  81. Lathers CM, Kelliher GJ, Roberts J, Beasley AB (1978) Nonuniform cardiac sympathetic nerve discharge: mechanism for coronary occlusion and digitalis induced arrhythmia. Circulation 57: 1058–1065

    Article  PubMed  CAS  Google Scholar 

  82. Li T, Sperelakis N (1983) Stimulation of slow action potentials in guinea pig papillary muscle cells by intracellular injection of cAMP, Gpp(NH)p, and cholera toxin. Circ Res 52:111–117

    Article  PubMed  CAS  Google Scholar 

  83. Liedtke AJ, Nellis S, Neely JR (1978) Effects of excess free fatty acids on mechanical and metabolic function in normal and ischemic myocardium in swine. Circ Res 43: 652–661

    Article  PubMed  CAS  Google Scholar 

  84. Loewy AD (1981) Descending pathways to sympathetic and parasympathetic preganglionic neurons. J Auton Nerv Syst 3: 265–275

    Article  PubMed  CAS  Google Scholar 

  85. Loewy AD, Burton H (1978) Nuclei of the solitary tract. Efferent projections to the lower brainstem and spinal cord of the cat. J Comp Neurol 181: 421–450

    Article  PubMed  CAS  Google Scholar 

  86. Lombardi F, Verrier RL, Lown B (1983) Relationship between sympathetic neural activity, coronary dynamics, and vulnerability to ventricular fibrillation during myocardial ischemia and reperfusion. Am Heart J 105: 958–965

    Article  PubMed  CAS  Google Scholar 

  87. Lorenz RR, Vanhoutte PM (1975) Inhibition of adrenergic neurotransmission in isolated veins of the dog by potassium ions. J Physiol (Lond) 246: 479–484

    CAS  Google Scholar 

  88. Lown B, DeSilva RA, Reich P, Murawski BJ (1980) Psychophysiologic factors in sudden cardiac death. Am J Psychiatry 137: 1325–1335

    PubMed  CAS  Google Scholar 

  89. Maisel AS, Motulsky HJ, Insel PA (1986) Receptor traffic in the myocardium: Comparison of α- and β-adrenergic receptors. J Am Coll Cardiol [Suppl A] 7: 80A

    Google Scholar 

  90. Malliani A, Parks M, Tuckett RP, Brown AM (1973) Reflex increases in heart rate elicited by stimulation of afferent cardiac sympathetic nerve fibers in the cat. Circ Res 32: 9–14

    PubMed  CAS  Google Scholar 

  91. Malliani A, Peterson DF, Bishop VS, Brown AM (1972) Spinal sympathetic cardiocardiac reflexes. Circ Res 30:158–166

    Article  PubMed  CAS  Google Scholar 

  92. Malliani A, Recordati G, Schwartz PJ (1973) Nervous activity of afferent cardiac sympathetic fibers with atrial and ventricular endings. J Physiol (Lond) 29:457–469

    Google Scholar 

  93. Malliani A, Schwartz PJ, Zanchetti A (1969) A sympathetic reflex elicited by experimental coronary occlusion. Am J Physiol 217: 703–709

    PubMed  CAS  Google Scholar 

  94. Marshall RM, Parratt JR (1980) The early consequences of myocardial ischaemia and their modification. J Physiol (Paris) 76: 699–715

    CAS  Google Scholar 

  95. Martin C, Meesmann W (1985) Antiarrhythmic effect of regional myocardial chemical sympathectomy in the early phase of coronary artery occlusion in dogs. J Cardiovasc Pharmacol [Suppl 5] 7: S76–S80

    Article  PubMed  Google Scholar 

  96. McDonald L, Baker C, Bray C, McDonald A, Restieaux N (1969) Plasma-catecholamines after cardiac infarction. Lancet 2:1021–1023

    Article  PubMed  CAS  Google Scholar 

  97. McGrath BP, Lim SP, Leversha L, Shanahan A (1981) Myocardial and peripheral catecholamine responses to acute coronary artery constriction before and after propranolol treatment in the anaesthetized dog. Cardiovasc Res 15: 28–34

    Article  PubMed  CAS  Google Scholar 

  98. Melville KI, Blum B, Shister HE, Silver MD (1963) Cardiac ischemic changes and arrhythmias induced by hypothalamic stimulation. Am J Cardiol 12: 781–791

    Article  PubMed  CAS  Google Scholar 

  99. Michell RH (1984) Polyphosphoinositide breakdown as the initiating reaction in receptorstimulated inositol phospholipid metabolism. Life Sci 32: 2083–2085

    Article  Google Scholar 

  100. Miura Y, Inui J, Imamura H (1978) Alpha-adrenoceptor-mediated restoration of calcium dependent potentials in the partially depolarized rabbit papillary muscle. Naunyn Schmiedebergs Arch Pharmacol 301: 201–205

    Article  PubMed  CAS  Google Scholar 

  101. Movsesian MA, Thomas AP, Selak M, Williamson JR (1985) Inositol trisphosphate does not release Ca2+ from permeabilized cardiac myocytes and sarcoplasmic reticulum. FEBS Lett 185: 328–332

    Article  PubMed  CAS  Google Scholar 

  102. Mugelli A, Cerbai E, Amerini S, Giotti A (1985) Altered responsiveness of cardiac alpha- and beta-adrenoceptors during hypoxia and aging: relevance for arrhythmias. New Trends Arrhythmias 1: 115–123

    Google Scholar 

  103. Mukherjee A, Bush LR, McCoy KE, Duke RJ, Hagler H, Buja LM, Willerson JT (1982) Relationship between β-adrenergic receptor numbers and physiological responses during experimental canine myocardial ischemia. Circ Res 50: 735–741

    Article  PubMed  CAS  Google Scholar 

  104. Mukheijee A, Hogan M, McCoy K, Buja LM, Willerson JT (1980) Influence of experimental myocardial ischemia on alpha1-adrenergic receptors. Circulation [Suppl 3] 64: 149

    Google Scholar 

  105. Muntz KH, Hagler HK, Boulas HJ, Willerson JT, Buja LM (1984) Redistribution of catecholamines in the ischemic zone of the dog heart. Am J Pathol 114: 64–78

    PubMed  CAS  Google Scholar 

  106. Muntz KH, Willerson JT, Buja LM (1983) Autoradiographic localization of alpha adrenergic receptors on rat cardiac myocytes. Circulation [Suppl 3] 68:59

    Google Scholar 

  107. Nazum FR, Bischoff F (1953) The urinary output of catechol derivatives including adrenaline in normal individuals in essential hypertension and in myocardial infarction. Circulation 7: 96–101

    Article  Google Scholar 

  108. Nishizuka Y (1984) The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature 308: 693–697

    Article  PubMed  CAS  Google Scholar 

  109. Nishizuka Y (1984) Turnover of inositol phospholipids and signal transduction. Science 225: 1365–1370

    Article  PubMed  CAS  Google Scholar 

  110. Nosek TM, Williams MF, Zeigler ST, Godt RE (1986) Inositol trisphosphate enhances calcium release in skinned cardiac and skeletal muscle. Am J Physiol 250: C807–C811

    PubMed  CAS  Google Scholar 

  111. Otani H, Otani H, Das DK (1986) Evidence that phosphoinositide response is mediated by α1 adrenoceptor stimulation, but not linked with excitation-contraction coupling in cardiac muscle. Biochem Biophys Res Commun 136: 863–869

    Article  PubMed  CAS  Google Scholar 

  112. Paintal AS (1972) Cardiovascular receptors. In: Neil E (ed) Handbook of sensory physiology, vol 3. Enteroceptors. Springer, Berlin Heidelberg New York, pp 1–45

    Google Scholar 

  113. Pandey RC, Srivastava RD, Bhatnagar VM (1979) Effect of unilateral stellate ganglion blockade and stimulation on experimental arrhythmias. Indian J Physiol Pharmacol 23: 305–314

    PubMed  CAS  Google Scholar 

  114. Parratt JR (1980) Beta-adrenoceptor blockade and early post-infarction dysrhythmias. In: Burley DM, Birdwood GFB (eds) The clinical impact of beta-adrenoceptor blockade. Ciba Laboratories, Horsham, Surrey, pp 29–49

    Google Scholar 

  115. Peterson DF, Brown AM (1971) Pressor reflexes produced by stimulation of afferent fibers in the cardiac sympathetic nerves of the cat. Circ Res 28: 605–610

    Article  PubMed  CAS  Google Scholar 

  116. Podrid PJ (1984) Role of higher nervous activity in ventricular arrhythmia and sudden cardiac death: implications for alternative antiarrhythmic therapy. Ann NY Acad Sci 432: 296–313

    Article  PubMed  CAS  Google Scholar 

  117. Poggioli J, Sulpice JC, Vassort G (1986) Inositol phosphate production following α 1-adrenergic, muscarinic or electrical stimulation in isolated rat heart. FEBS Lett 206: 292–298

    Article  PubMed  CAS  Google Scholar 

  118. Pogwizd SM, Corr PB (1987) Electrophysiologic mechanisms underlying arrhythmias due to reperfusion of ischemic myocardium. Circulation 76: 404–426

    Article  PubMed  CAS  Google Scholar 

  119. Pogwizd SM, Corr PB (1987) Reentrant and nonreentrant mechanisms contribute to arrhythmogenesis during early myocardial ischemia: Results using three-dimensional mapping. Circ Res 61: 352–371

    Article  PubMed  CAS  Google Scholar 

  120. Pogwizd SM, Onufer JR, Kramer JB, Sobel BE, Corr PB (1986) Induction of delayed afterdepolarizations and triggered activity in canine Purkinje fibers by lysophosphoglycerides. Circ Res 59: 416–426

    Article  PubMed  CAS  Google Scholar 

  121. Reis DJ, Ross CA, Ruggiero DA, Granata AR, Joh TH (1984) Role of adrenaline neurons of ventrolateral medulla (the CI group) in the tonic and phasic control of arterial pressure. Clin Exp Hypertens [A] 6: 221–241

    Article  CAS  Google Scholar 

  122. Richardson J A (1963) Circulating levels of catecholamines in acute myocardial infarction and angina pectoris. Prog Cardiovasc Dis 6: 56–62

    Article  PubMed  CAS  Google Scholar 

  123. Rochette L, Didier JP, Moreau D, Bralet J (1980) Effect of substrate on release of myocardial norepinephrine and ventricular arrhythmias following reperfusion of the ischaemic isolated working rat heart. J Cardiovasc Pharmacol 2: 267–279

    Article  PubMed  CAS  Google Scholar 

  124. Rogg H, Bucher UM (1979) Effects of an isolated myocardial ischaemia in dogs on plasma catecholamines in the systemic and local coronary venous blood. Naunyn-Schmiedebergs Arch Pharmacol 307:R42

    Google Scholar 

  125. Ross CA, Ruggiero DA, Park DH, Joh TH, Sved AF, Feraandez-Pardal J, Saavedra JM, Reis DJ (1984) Tonic vasomotor control by the rostral ventrolateral medulla: effect of electrical or chemical stimulation of the area containing C1 adrenaline neurons on arterial pressure, heart rate, and plasma catecholamines and vasopressin. J Neurosci 4: 474–494

    PubMed  CAS  Google Scholar 

  126. Saper C, Loewy AD, Swanson LW, Cowan WM (1976) Direct hypothalamo-autonomic connections. Brain Res 117: 305–312

    Article  PubMed  CAS  Google Scholar 

  127. Sato A, Schmidt RF (1973) Somatosympathetic reflexes: afferent fibers, central pathways, discharge characteristics. Physiol Rev 53: 916–947

    PubMed  CAS  Google Scholar 

  128. Schümann HJ (1980) Are there alpha-adrenoceptors in the mammalian heart? Trends Pharmacol Sci 1: 195–197

    Article  Google Scholar 

  129. Schümann HJ, Endoh M, Brodde OE (1975) The time course of the effects of the beta- and alpha-adrenoceptor stimulation by isoprenaline and methoxamine on the contractile force and cAMP level of the isolated rabbit papillary muscle. Naunyn Schmiedebergs Arch Pharmacol 289: 291–302

    Article  PubMed  Google Scholar 

  130. Schwartz PJ, LaRovere MT, Zaza A, Pala M, Mazzoleni C, Specchia G (1985) Baroreceptor reflexes and cardiac electrical instability in patients with a myocardial infarction. New Trends Arrhythmias 1: 289–292

    Google Scholar 

  131. Schwartz PJ, Stone HL, Brown AM (1976) Effects of unilateral stellate ganglion blockade on the arrhythmias associated with coronary occlusion. Am Heart J 92: 589–599

    Article  PubMed  CAS  Google Scholar 

  132. Schwartz PJ, Vanoli E, Zaza A, Zuanetti G (1985) The effect of antiarrhythmic drugs on lifethreatening arrhythmias induced by the interaction between acute myocardial ischemia and sympathetic hyperactivity. Am Heart J 109: 937–948

    Article  PubMed  CAS  Google Scholar 

  133. Shahab L, Wollenberger A, Hause M, Schiller U (1969) Noradrenalineabgabe aus dem Hundeherzen nach vorübergehender Okklusion einer Koronararterie. Acta Biol Med Germ 22: 135–143

    PubMed  CAS  Google Scholar 

  134. Sharma AD, Saffitz JE, Lee BI, Sobel BE, Corr PB (1983) Alpha adrenergic-mediated accumulation of calcium in reperfused myocardium. J Clin Invest 72: 802–818

    Article  PubMed  CAS  Google Scholar 

  135. Sheridan DJ, Penkoske PA, Sobel BE, Corr PB (1980) Alpha-adrenergic contributions to dysrhythmia during myocardial ischemia and reperfusion in cats. J Clin Invest 65: 161–171

    Article  PubMed  CAS  Google Scholar 

  136. Skinner JE, Lie JT, Entman ML (1975) Modification of ventricular fibrillation latency following coronary artery occlusion in the conscious pig: The effects of psychological stress and beta-adrenergic blockade. Circulation 51: 656–667

    Article  PubMed  CAS  Google Scholar 

  137. Skinner JE, Reed JC (1981) Blockade of frontocortical-brainstem pathway prevents ventricular fibrillation of ischemic heart. Am J Physiol 240: H156–H163

    PubMed  CAS  Google Scholar 

  138. Smith OA Jr, Nathan MA (1966) Inhibition of the carotid sinus reflex by stimulation of the inferior olive. Science 154: 674–675

    Article  PubMed  Google Scholar 

  139. Staszewska-Barezak J, Ceremuzynski L (1968) The continuous estimation of catecholamine release in the early stages of myocardial infarction in the dog. Clin Sci 34: 531–539

    Google Scholar 

  140. Stewart JR, Burmeister WE, Burmeister J, Lucchesi BR (1980) Electrophysiologic and antiarrhythmic effects of phentolamine in experimental coronary artery occlusion and reperfusion in the dog. J Cardiovasc Pharmacol 2: 77–91

    Article  PubMed  CAS  Google Scholar 

  141. Swanson LW (1982) Forebrain neural mechanisms involved in cardiovascular regulation. In: Smith OA, Galosy RA, Weiss SM (eds) Circulation, neurobiology and behavior. Elsevier Biomedical, New York, pp 13–22

    Google Scholar 

  142. Tashiro N, Tanaka T, Fukumoto T, Hirata K, Nakao H (1985) Emotional behavior and arrhythmias induced in cats by hypothalamic stimulation. Life Sci 36: 1087–1094

    Article  PubMed  CAS  Google Scholar 

  143. Thandroyen FT, Worthington MG, Higginson LM, Opie LH (1983) The effect of alpha- and beta-adrenoceptor antagonist agents on reperfusion ventricular fibrillation and metabolic status in the isolated perfused rat heart. J Am Coll Cardiol 14: 1056–1066

    Article  Google Scholar 

  144. Toda N, Shimamoto K (1968) The influence of sympathetic stimulation on transmembrane potentials in the SA node. J Pharmacol Exp Ther 159: 298–305

    PubMed  CAS  Google Scholar 

  145. Tsien RW, Carpenter DO (1978) Ionic mechanisms of pacemaker activity in cardiac Purkinje fibers. Fed Proc 37: 2127–2131

    PubMed  CAS  Google Scholar 

  146. Uchida Y, Murao S (1973) Excitation of afferent cardiac sympathetic nerve fibers during coronary occlusion. Am J Physiol 226: 1094–1099

    Google Scholar 

  147. Uchida Y, Murao S (1974) Afferent sympathetic nerve fibers originating in left atrial wall. Am J Physiol 227: 753–758

    PubMed  CAS  Google Scholar 

  148. Uchida Y, Murao S (1974) Bradykinin-induced excitation of afferent cardiac sympathetic nerve fibers. Jpn Heart J 15: 84–91

    Article  PubMed  CAS  Google Scholar 

  149. Uchida Y, Murao S (1975) Acid-induced excitation of afferent cardiac sympathetic nerve fibers. Am J Physiol 228: 27–33

    PubMed  CAS  Google Scholar 

  150. Ueda H, Uchida Y, Kamisaka K (1969) Distribution and responses of the cardiac sympathetic receptors to mechanically induced circulatory changes. Jpn Heart J 10: 70–80

    Article  PubMed  CAS  Google Scholar 

  151. Vanoli E, Zaza A, Zuanetti G, Facchini M, Pippalettera M, Schwartz PJ (1982) Pharmacologic prevention of malignant arrhythmias due to acute myocardial ischemia and sympathetic hyperactivity. Circulation [Suppl 2] 66:27

    Google Scholar 

  152. Verrier RL, Lown B (1984) Behavioral stress and cardiac arrhythmias. Ann Rev Physiol 46: 155–176

    Article  CAS  Google Scholar 

  153. Verrier RL, Lown B (1982) Experimental studies of psychophysiological factors in sudden cardiac death. Acta Med Scand [Suppl] 660: 57–68

    CAS  Google Scholar 

  154. Verrier RL, Thompson PL, Lown B (1974) Ventricular vulnerability during sympathetic stimulation: role of heart rate and blood pressure. Cardiovasc Res 8: 602–610

    Article  PubMed  CAS  Google Scholar 

  155. Vetter NJ, Strange RC, Adams W, Oliver MF (1974) Initial metabolic and hormonal response to acute myocardial infarction. Lancet 1: 284–289

    Article  PubMed  CAS  Google Scholar 

  156. Videbaek J, Christensen NJ, Sterndorff B (1972) Serial determination of plasma catecholamines in myocardial infarction. Circulation 46: 846–855

    Article  PubMed  CAS  Google Scholar 

  157. Wallace AG, Sarnoff SJ (1964) Effects of sympathetic nerve stimulation on conduction in the heart. Circ Res 14: 86–92

    Article  PubMed  CAS  Google Scholar 

  158. Webb SW, Adgey AA, Pantridge JF (1972) Autonomic disturbance at onset of acute myocardial infarction. Br Med J 3:89–92

    Article  PubMed  CAS  Google Scholar 

  159. Wilber DJ, Lynch JJ, Pitt B, Lucchesi BR (1984) Protective effect of alphai blockade in a conscious canine model of sudden death. Circulation [Suppl 2] 70:179

    Google Scholar 

  160. Williams LT, Guerrero JL, Leinbach RC (1982) Prevention of reperfusion dysrhythmia by selective coronary alpha-adrenergic blockade. Am J Cardiol 49: 1046

    Article  Google Scholar 

  161. Wit AL, Rosen MR (1986) Afterdepolarizations and triggered activity. In: Fozzard HA, Jennings RB, Haber E, Katz AM, Morgan HE (eds) The heart and cardiovascular system. Raven, New York, pp 1449–1490

    Google Scholar 

  162. Wit AL, Cranefield PF (1977) Triggered and automatic activity in the canine coronary sinus. Circ Res 41: 435–445

    Article  Google Scholar 

  163. Witkowski FX, Corr PB (1984) An automated simultaneous transmural cardiac mapping system. Am J Physiol 247: H661–H668

    PubMed  CAS  Google Scholar 

  164. Wollenberger A, Shahab L (1965) Anoxia-induced release of noradrenaline from the isolated perfused heart. Nature 207: 88–89

    Article  PubMed  CAS  Google Scholar 

  165. Yamada KA, Lange LG, Sobel BE, Corr PB (1984) a-Adrenergic blockade ameliorates mitochondrial dysfunction associated with reperfusion of ischemic myocardium. Fed Proc 43: 812

    Google Scholar 

  166. Yamada KA, McAllen RM, Loewy AD (1984) GABA antagonists applied to the ventral surface of the medulla oblongata block the baroreceptor reflex. Brain Res 297: 175–180

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yamada, K.A., Heathers, G.P., Pogwizd, S.M., Corr, P.B. (1989). Sympathetic Influences on Arrhythmogenesis in the Ischemic Heart. In: Refsum, H., Sulg, I.A., Rasmussen, K. (eds) Heart & Brain, Brain & Heart. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83456-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83456-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83458-5

  • Online ISBN: 978-3-642-83456-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics