Neuromonitoring in High Risk Surgery: Physiological Tolerance Limits for Central Nervous System

  • I. A. Sulg


The term neuromonitoring refers to the semicontinuous recording, analysis, and display of some vital nervous system functions in high risk procedures in order to detect spontaneous or induced changes in a patient’s condition when special circumstances (such as anesthesia, neuromuscular blocking, artificial ventilation, induced drug coma, or primary coma of various origin) make neurological observation difficult. Neuromonitoring delivers information about the integrity or possible disturbances of certain nervous system functions [10, 76, 102]. Some alterations of monitored variables during surgical or other critical procedures from their preoperative characteristics can be interpreted as a warning, indicating that there may be a deficiency in tissue oxygenation [11, 14, 30, 152]. These neurofunctional warning signs usually precede irreversible changes as a result of definite structural damage. When these signs (such as EEG slowing or decrement in evoked response amplitudes) appear, there may still be time to prevent permanent damage. The following functions of the central nervous system can be monitored in quantified terms: EEG, evoked cerebral responses (EvCR), cerebral blood flow (CBF), cerebral oxygen consumption (CMRO2), and intracranial pressure (ICP).


Cerebral Blood Flow Intracranial Pressure Regional Cerebral Blood Flow Mean Amplitude Extracorporeal Circulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Åberg T, Ronquist G, Tydén H, Brunnkvist S, Hultman J, Bergström K, Lilja A (1984) Adverse effects on the brain in cardiac operations as assessed by biochemical, psychometric, and radiologic methods. J Thorac Cardiovasc Surg 87: 99–105PubMedGoogle Scholar
  2. 2.
    Ali HH, Savarese JJ (1976) Monitoring of neuromuscular function. Anesthesiology 45:216–249PubMedCrossRefGoogle Scholar
  3. 3.
    Allen A, Starr A, Nudleman K (1981) Assessment of sensory function in the operating room utilizing cerebral evoked potentials: a study of 56 surgically anesthetized patients. Clin Neurosurg 28: 457–481PubMedGoogle Scholar
  4. 4.
    Arfel G, Weiss J, DuBouchet N (1961) EEG findings during open-heart surgery with extracorporeal circulation. In: Gastaut H, Meyer JS (eds) Cerebral anoxia and the electroencephalogram. Thomas, Springfield, pp 231–249Google Scholar
  5. 5.
    Astrup J, Symon L, Branston NM, Lassen NA (1977) Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischaemia. Stroke 8: 51–57PubMedCrossRefGoogle Scholar
  6. 6.
    Bart AJ, Homi J, Linde HW (1971) Changes in the power spectra of electroencephalograms during anesthesia with fluroxene, methoxyflurane and ethrane. Anesth Analg 50: 53–63PubMedCrossRefGoogle Scholar
  7. 7.
    Bennett DR, Madsen JA, Jordan WS, Wiser WC (1973) Ketamine anesthesia in brain damaged epileptics: electroencephalographic and clinical observations. Neurology 23: 449–460PubMedCrossRefGoogle Scholar
  8. 8.
    Berger H (1929) Über das Elektroenzephalogramm des Menschen. Arch Psychiatr Nervenkr 87: 527–570CrossRefGoogle Scholar
  9. 9.
    Bickford RG, Brimm J, Berger L, Aung M (1973) Application of compressed spectral array in clinical EEG. In: Kellaway, Petersen I (eds) Automation of clinical electroencephalography. Raven, New York, pp 55–66Google Scholar
  10. 10.
    Binnie CD (1983) Telemetric EEG monitoring in epilepsy. In: Pedley TA, Meldrum BS (eds) Recent advances in epilepsy, I. Churchill Livingstone, Edinburgh, pp 155–178Google Scholar
  11. 11.
    Branthwaite MA (1975) Prevention of neurological damage during open-heart surgery. Thorax 30: 258–261PubMedCrossRefGoogle Scholar
  12. 12.
    Brazier MAB (1964) The effect of drugs on the EEG in man. Clin Pharmacol Ther 5: 102–116PubMedGoogle Scholar
  13. 13.
    Brazier MAB (1972) The neurological background for anesthesia. Thomas, SpringfieldGoogle Scholar
  14. 14.
    Brechner VL (1964) Current status of electroencephalography in the practice of clinical anesthesia. Clin Anesth 2: 87Google Scholar
  15. 15.
    Burch NR, Nettleton WJ, Sweeney J, Edwards RJ (1964) Period analysis of the electroencephalogram on a general purpose digital computer. Ann NY Acad Sci 115: 827–843PubMedGoogle Scholar
  16. 16.
    Chiappa KH, Burke SR, Young RR (1979) Results of electroencephalographic monitoring during 367 carotid endarterectomies. Stroke 10: 381–388PubMedCrossRefGoogle Scholar
  17. 17.
    Clark DL, Hosick EC, Rosner BS (1971) Neurophysiological effects of different anesthetics in unconscious man. J Appl Physiol 31:884–891PubMedGoogle Scholar
  18. 18.
    Clarke RSJ, Dundee JW, Carson IW (1972) Some aspects of the clinical pharmacology of Althesin. Postgrad Med J [Suppl 2] 48:62–65PubMedGoogle Scholar
  19. 19.
    Clarke RSJ (1974) The eugenols. In: Dundee JW, Wyant GM (eds) Intravenous anesthesia. Churchill, Livingstone, Edinburgh, pp 162–192Google Scholar
  20. 20.
    Cold GE, Eskesen V, Eriksen H, Blatt Lyon B (1986) Changes in CMRO2, EEG and concentration of etomidate in serum and brain tissue during craniotomy with continuous etomidate supplemented with N20 and fentanyl. Acta Anaesthesiol Scand 30: 159–163PubMedCrossRefGoogle Scholar
  21. 21.
    Cooper R, Osselton JW, Shaw JC (1980) EEG technology, 3rd edn. Butterworths, LondonGoogle Scholar
  22. 22.
    Courtin RF, Bickford RG, Faulconer A Jr (1950) The classification and significance of electroencephalographic patterns produced by nitrous-oxide and ether anesthesia during surgical operations. Proc Staff Meet Mayo Clin 25: 197–208PubMedGoogle Scholar
  23. 23.
    Dearden NM (1985) Ischemic brain. Lancet 11: 255–260CrossRefGoogle Scholar
  24. 24.
    Dundee JW, Haslett WHK, Keilty SR (1970) Studies of drugs given before anesthesia: diazepamcontaining mixtures. Br J Anesth 42: 143–150CrossRefGoogle Scholar
  25. 25.
    Dundee JW, Wyant GM (1974) Intravenous anesthesia. Churchill Livingstone, Edinburgh, pp 249–273Google Scholar
  26. 26.
    Edmond HL Jr, Yoon YK, Sjogren SJ, Maguire HT, McGraw CP (1983) In: Prakash O, Mey SH, Patterson RW (eds) Computing in anesthesia and intensive care. Nijhoff, The Hague, pp 279–292Google Scholar
  27. 27.
    Edmond HL Jr, Paloheimo M, Wanquier A (1988) Computerized EMG monitoring in anesthesia and intensive care. Malherbe, Schoutlaan, p 116Google Scholar
  28. 28.
    Edwards G, Morton HJV, Pask EA, Wylie WD (1956) Deaths associated with anesthesia. A report on 1000 cases. Anaesthesia 11: 194–220PubMedCrossRefGoogle Scholar
  29. 29.
    Eger EI, Saidman LJ, Brandstater B (1965) Minimum alveolar anesthetic concentration: a standard of anesthetic potency. Anesthesiology 26: 756–763PubMedCrossRefGoogle Scholar
  30. 30.
    Evans JM, Fraser A, Wise CC, Davies WL (1983) In: Prakash O, Mey SH, Patterson RW (eds) Computing in anesthesia and intensive care. Nijhoff, The Hague, pp 279–292CrossRefGoogle Scholar
  31. 31.
    Faulconer A Jr (1952) Correlation of concentration of ether in arterial blood with electroencephalographic patterns during ether-oxygen and nitrous oxide-oxygen of human surgical patients. Anesthesiology 13: 361–369PubMedCrossRefGoogle Scholar
  32. 32.
    Findeiss JC, Kien JA, Huse KOW, Linde HW (1969) Power spectral density of the electroencephalogram during halothane and cycloprane anesthesia in man. Anesth Analg 48: 1018–1023PubMedCrossRefGoogle Scholar
  33. 33.
    Fink M (1964) A selected bibliography of electroencephalography in human psychopharmacology 1951-1962. Electroenceph Clin Neurophysiol Suppl 23Google Scholar
  34. 34.
    Forster FM, Nims LF (1947) EEG effects of acute increase of intracranial pressure. Arch Neurol Psychiat 47: 449–453CrossRefGoogle Scholar
  35. 35.
    Galla SJ, Olmedo AK, Ketchmer HE (1962) Correlation of EEG patterns with arterial concentrations and clinical signs during halothane anesthesia. Anesthesiology 23: 147CrossRefGoogle Scholar
  36. 36.
    Gisvold SE, Safar P, Hendrick HHL, Rao G, Moossy J, Alexander H (1984) Thiopental treatment after global brain ischemia in pigtailed monkeys. Anesthesiology 60: 88–96PubMedCrossRefGoogle Scholar
  37. 37.
    Graham DJ (1985) The pathology of brain ischemia and possibilities for therapeutic intervention. Br J Anaesth 57:3–17PubMedCrossRefGoogle Scholar
  38. 38.
    Grundy BL (1983) Intraoperative monitoring of sensory evoked potentials. Anesthesiology 58: 72–87PubMedCrossRefGoogle Scholar
  39. 39.
    Hacke W (1985) Neuromonitoring. J Neurol 232: 125–133PubMedCrossRefGoogle Scholar
  40. 40.
    Hagstam KE (1971) EEG frequency content related to chemical blood parameters in chronic uremia. Scand J Urol Nephrol [Suppl 7] (thesis)Google Scholar
  41. 41.
    Halldin M, Wahlin A (1959) Effects of succinylcholine on the intraspinal pressure. Acta Anaesthesiol Scand 3: 155–161PubMedCrossRefGoogle Scholar
  42. 42.
    Halley M, Reetsma K, Creech O (1958) Cerebral blood flow, metabolism and brain volume in extracorporeal circulation. J Thorac Cardiovasc Surg 36: 506–518Google Scholar
  43. 43.
    Harmel MH, Klein FF, Davis DA (1978) The EEMG–a practical index of cortical activity and muscular relaxation. Acta Anaesth Scand [Suppl] 70: 97–102Google Scholar
  44. 44.
    Harris RJ, Symon L, Brantston NM, Mayhen M (1981) J Cereb Blood Flow Metabol 1:203–209CrossRefGoogle Scholar
  45. 45.
    Hass HK (1981) Beyond cerebral blood flow, metabolism and ischemic thresholds. In: Meyer JS, Lechner H, Reinch M, Ott ED, Arbinar A (eds) Proceedings of X Salzburg Conference of Cerebral Vascular Disease, vol 3. Excerpta Medica, Amsterdam, pp 20–21Google Scholar
  46. 46.
    Henriksen L (1986) Brain luxury perfusion during cardiopulmonary bypass in humans. A study of the cerebral blood flow response to changes on CO2, O2, and blood pressure. J Cereb Blood Flow Metabol 6: 366–378CrossRefGoogle Scholar
  47. 47.
    Herrmann WM (1981) Some examples for the possibilities and limitations of pharmacoelectroencephalography as a method in clinical pharmacology. Methods Find Exp Clin Pharmacol [Suppl 1] 3: 55–76Google Scholar
  48. 48.
    Hicks RG, Kerr DR, Horton DA (1986) Thiopentone cerebral protection under EEG control during carotid endarterectomy. Anaesth Intensive Care 14: 22–28PubMedGoogle Scholar
  49. 49.
    Hjorth B (1970) EEG analysis based on time domain properties. Electroenceph Clin Neurophysiol 29: 306–310PubMedCrossRefGoogle Scholar
  50. 50.
    Hosick EC, Clark DL, Adam N, Rosner BS (1971) Neurophysiological effects of different anesthetics in conscious man. J Appl Physiol 31: 892–898PubMedGoogle Scholar
  51. 51.
    Ingvar DH, Lassen NA (1965) Methods for cerebral blood flow measurements in man. Br J Anaesth 37:216–224PubMedCrossRefGoogle Scholar
  52. 52.
    Ingvar DH, Sjölund B, Ardö A (1976) Correlation between dominant EEG-frequency, cerebral oxygen uptake and blood flow. Electroenceph Clin Neurophysiol 41: 268–276PubMedCrossRefGoogle Scholar
  53. 53.
    Ingram GS, Payne JP, Perry IR (1976) Electroencephalographic patterns during anesthetic induction with etomidate. Br J Clin Pharmacol 3: 356–357Google Scholar
  54. 54.
    Itil TM, Guven F, Cora R, Hsu W, Polvan N, Ucok A, Sanseigne A, Ulett GA (1971) Quantitative pharmacoelectroencephalography using frequency analyzer and digital computer methods in early drug evaluations. In: Smith WL (ed) Drugs, development, and brain functions. Thomas, Springfield, pp 145–166Google Scholar
  55. 55.
    Itil TM, Polvan N, Hsu W (1972) Clinical and EEG effects of GB-94, a “tetracyclic” antidepressant (EEG model in discovery of a new psychotropic drug). Curr Ther Res 14: 395–413PubMedGoogle Scholar
  56. 56.
    Javid H, Tufo HM, Najafi H, Dye WS, Hunter JA, Julian OC (1969) Neurological abnormalities following open-heart surgery. J Thorac Cardiovasc Surg 58: 502–509PubMedGoogle Scholar
  57. 57.
    John ER, Alter I, Ransehoff J (1982) Evaluation of coma patients with the brain state analyzer. In: Grossmann RG, Greildenberg PL (eds) Head injury: basic and clinical aspects. Raven, New York, pp 259Google Scholar
  58. 58.
    Johansson L, Lundberg S, Söderlund S (1967) Renal complications following heart surgery with extracorporeal circulation. Scand J Cardiovasc Surg 1:52–56CrossRefGoogle Scholar
  59. 59.
    Jones SJ, Edgar MA, Ransford AD, Thomas NP (1983) A system for the electrophysiological monitoring of the spinal cord during operations for scoliosis. J Bone Jt Surg 65B: 134–139Google Scholar
  60. 60.
    Julien RM, Kavan EM (1972) Electrographic studies of a new volatile anesthetic agent; Enflurane (Ethrane). J Pharmacol Exp Ther 183: 393–403PubMedGoogle Scholar
  61. 61.
    Juneja I, Flynn RE, Berger RI (1972) The arterial, venous pressures and the electroencephalogram during open heart surgery. Acta Neurol Scand 48: 163–168PubMedCrossRefGoogle Scholar
  62. 62.
    Kalenda Z (1978) Capnography during anesthesia and intensive care. Acta Anaesthesiol Belg 29: 201–228PubMedGoogle Scholar
  63. 63.
    Kardel T, Stigsby B (1975) Period-amplitude analysis of the electroencephalogram correlated with liver function in patients with cirrhosis of the liver. Electroenceph Clin Neurophysiol 38: 605–609PubMedCrossRefGoogle Scholar
  64. 64.
    Kavan EM, Juliene RM (1972) Central nervous system effects of isoflurane (Forane). Can Anesth Soc J 21:393–403Google Scholar
  65. 65.
    Kay B (1984) The anesthesia and brain monitor (ABM) concept and performance. Acta Anaesthesiol Belg [Suppl] 35Google Scholar
  66. 66.
    Keirsey DK, Bickford RG, Faulconer A Jr (1951) Electroencephalographic patterns produced by thiopental sodium during surgical operations: description and classification. Br J Anesth 23: 141–152CrossRefGoogle Scholar
  67. 67.
    Kety SS, Schmidt CF (1948) Nitrous oxide method for quantitative determination of cerebral blood flow in man. J Clin Invest 27: 476–483PubMedCrossRefGoogle Scholar
  68. 68.
    Klein FF (1976) A wave form analyzer applied to the human EEG. IEEE Trans Biomed Eng BME 23:246–252CrossRefGoogle Scholar
  69. 69.
    Kritikou PE, Branthwaite MA (1977) Significance of changes in cerebral electrical activity at onset of cardiopulmonary bypass. Thorax 32: 534–538PubMedCrossRefGoogle Scholar
  70. 70.
    Kubicki ST (1976) Fenthatienyl: EEG studies presented at VI World Congress of Anesthesia, MexicoGoogle Scholar
  71. 71.
    Kubler J, Doenieke A, Laub M (1977) The EEG after etomidate. In: Doeniccke A (ed) Etomidate. Springer, Berlin Heidelberg New York, pp 31–48Google Scholar
  72. 72.
    Kuikka J, Ahonen A, Kouvula A, Kallanranta T, Laitinen J (1977) An intravenous isotope method for measuring regional cerebral blood flow and volume. Phys Med Biol 22:958–970PubMedCrossRefGoogle Scholar
  73. 73.
    Langfitt TW, Weinstein JD, Kassell NF (1965) Cerebral blood flow with intracranial hypertension. Neurology 15:761–773PubMedCrossRefGoogle Scholar
  74. 74.
    Lassen NA (1959) Cerebral blood flow and oxygen consumption in man. Physiol Rev 39:183–238PubMedGoogle Scholar
  75. 75.
    Lassen NA (1966) The luxury-perfusion syndrome and its possible relation to acute metabolic acidosis localized within the brain. Lancet II: 1113–1115CrossRefGoogle Scholar
  76. 76.
    Levy WJ (1984) Intraoperative EEG patterns: implications for EEG monitoring. Anesthesiology 60: 430–434PubMedCrossRefGoogle Scholar
  77. 77.
    Levy WJ (1986) Power spectrum correlates of changes in consciousness during anesthetic induction with enflurane. Anesthesiology 64: 688–693PubMedCrossRefGoogle Scholar
  78. 78.
    Ljunggren B, Norberg K, Siesjo BK (1974) Influence of tissue acidosis upon restitution of brain energy metabolism following total ischemia. Brain Res 77:173–174PubMedCrossRefGoogle Scholar
  79. 79.
    Lopes de Silva FH (1987) Computerized EEG analysis: a tutorial overview. In: Halliday AM, Butler SR, Paul R (eds) A textbook of clinical neurophysiology. John Wiley & Sons, Chichester, pp 61–102Google Scholar
  80. 80.
    Lundberg N (1969) Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiat Neurol Scand [Suppl] 149: 1–193 (thesis)Google Scholar
  81. 81.
    Marsh ML, Shapiro HM, Smith RW (1979) Changes in neurologic status and intracranial pressure associated with sodium nitroprusside administration. Anesthesiology 51: 336–338PubMedCrossRefGoogle Scholar
  82. 82.
    Maynard DE (1979) Development of the CFM: the cerebral function analysing monitor (CFAM). Ann Anesth Franc 20: 253–255Google Scholar
  83. 83.
    Maynard DE, Jenkinson JL (1984) The cerebral function analysing monitor. Initial clinical experience, application and further development. Anaesthesia 39: 678–690Google Scholar
  84. 84.
    Miller JD (1979) Barbiturates and raised intracranial pressure. Ann Neurol 6:189–193PubMedCrossRefGoogle Scholar
  85. 85.
    Miller RD (ed) (1986) Anesthesia. Churchill Livingstone, EdinburghGoogle Scholar
  86. 86.
    Mori K (1973) Excitation and depression of C.N.S. electrical activities induced by general anesthetics. In: Fujita M, Iwatsuki K, Miyazaki M (eds) Anesthesiology. International Congress Series, no 292, Symp 1. Elsevier, New YorkGoogle Scholar
  87. 87.
    Mori K, Iwabuchi K, Fujita M (1973) The effects of depolarizing muscle relaxants on the electroencephalogram and the circulation during halothane anesthesia in man. Br J Anesth 45: 604CrossRefGoogle Scholar
  88. 88.
    Morrison JD (1974) Neurolept techniques. In: Dundee JW, Wyant GM (eds) Intravenous anesthesia. Churchill Livingstone, Edinburgh, pp 207–218Google Scholar
  89. 89.
    Myers RR, Stockard JJ, Saidman LJ (1977) Monitoring of cerebral perfusion during anesthesia by time-compressed Fourier analysis of the EEG. Stroke 8: 331–337PubMedCrossRefGoogle Scholar
  90. 90.
    Neigh JL, Garman JK, Harp JR (1971) The electroencephalographic patterns during anesthesia with Ethrane. Anesthesiology 35: 482–487PubMedCrossRefGoogle Scholar
  91. 91.
    Ngai AH, Tseng DTC, Wang SC (1966) Effect of diazepam and other central nervous system depressants on spinal reflexes in cats: a study of site of action. J Pharmacol Exp Ther 153: 344Google Scholar
  92. 92.
    Obrist WD, Sokoloff L, Lassen NA, Lane MH, Butler RN, Feinberg I (1963) Relation of EEG to cerebral blood flow and metabolism in old age. Electroenceph Clin Neurophysiol 15: 610–619PubMedCrossRefGoogle Scholar
  93. 93.
    Obrist WD, Thompson HK, Wang HS, Wilkinson WE (1975) Regional cerebral blood flow estimated by 133Xenon inhalation. Stroke 6: 245–256PubMedCrossRefGoogle Scholar
  94. 94.
    Overgaard J, Skinhøj E (1975) The effects of hydralazine upon intracranial pressure and cerebral blood flow. In: Harper M, Jennett WB, Miller JD (eds) Blood flow and metabolism in the brain. Churchill Livingstone, Edinburgh, pp 16–17Google Scholar
  95. 95.
    Overgaard J, Mosdal C, Tweed WA (1981) Cerebral circulation after head injury. Part 3. Does regional cerebral blood flow determine recovery of brain function after blunt head injury? J Neurosurg 55: 63–74PubMedCrossRefGoogle Scholar
  96. 96.
    Parsonage MJ, Norris JW (1967) Use of diazepam in treatment of severe convulsive status epilepticus. Brit Med J 3: 85–88PubMedCrossRefGoogle Scholar
  97. 97.
    Paulson OB, Sharbrough W (1974) Physiologic and pathophysiologic relationships between the EEG and the regional cerebral blood flow. Acta Neurol Scand 50:194–220PubMedCrossRefGoogle Scholar
  98. 98.
    Pedley TA, Emerson RG (1985) Neurological complications of cardiac surgery. In: Mathews WB, Glaser HG (eds) Recent advances in clinical neurology. Churchill Livingstone, Edinburgh, pp 159–178Google Scholar
  99. 99.
    Phelps ME, Hoffmann EJ, Huang SC (1978) A new computerized tomographic imaging system for positronemitting radiopharmaceuticals. J Nucl Med 19: 635–647PubMedGoogle Scholar
  100. 100.
    Pickerodt VWA, McDowall DG, Coroneos NJ (1972) Effect of Althesin on cerebral perfusion, cerebral metabolism and intracranial pressure in the anesthetized baboon. Br J Anesth 44:751CrossRefGoogle Scholar
  101. 101.
    Prior PF (1979) Monitoring cerebral function: long term recording of cerebral activity. Elsevier, AmsterdamGoogle Scholar
  102. 102.
    Prior PF (1981) Electroencephalography in cerebral monitoring: coma, cerebral ischemia and epilepsy. In: Stålberg E, Young RR (eds) Butterworths international medical reviews, neurology, clinical neurophysiology. Butterworths, London, pp 347–383Google Scholar
  103. 103.
    Prior PF, Maynard DE (1986) Monitoring cerebral function. Long-term monitoring of EEG and evoked potentials. Elsevier, AmsterdamGoogle Scholar
  104. 104.
    Rating W, Kuypers R (1984) Frontal EMG and brain activity during and after anesthesia. Acta Anaesthesiol Belg [Suppl] 35Google Scholar
  105. 105.
    Rossmann KA, Sate KF (1970) Recovery of neuronal function after prolonged cerebral ischemia. Science 168: 375CrossRefGoogle Scholar
  106. 106.
    Saletu B (1982) Pharmaco-EEG profiles of typical and atypical antidepressants. Adv Biochem Psychopharmacol 32: 257–268PubMedGoogle Scholar
  107. 107.
    Salerno TA, Lince DP, White DN, Lynn RB, Charrette EJD (1978) Monitoring of electroencephalogram during open-heart surgery. A prospective analysis of 118 cases. J Thorac Cardiovasc Surg 76: 97–100PubMedGoogle Scholar
  108. 108.
    Sawyer KC Jr, Sawyer RB, Robb WC (1963) Postoperative renal failure. Am J Surg 106: 668–672PubMedCrossRefGoogle Scholar
  109. 109.
    Schils GF, Sasse FJ, Rideout VC (1987) Automatic control of anesthesia using two feedback variables. Ann Biomed Eng 15: 19–34PubMedCrossRefGoogle Scholar
  110. 110.
    Schmidt D (1982) The influence of antiepileptic drugs on the electroencephalogram: a review of controlled clinical studies. Electroenceph Clin Neurophysiol [Suppl] 36: 453–466Google Scholar
  111. 111.
    Schwartz J, Feldstein S, Fink M, Shapiro DM, Itil T (1971) Evidence for a characteristic EEG frequency response to thiopental. Electroencephal Clin Neurophysiol 31: 149–153CrossRefGoogle Scholar
  112. 112.
    Schwartz MS, Virden S, Scott DF (1974) Effects of ketamine on the electroencephalogram. Anesthesia 29: 135CrossRefGoogle Scholar
  113. 113.
    Schwilden H, Stoeckel H (1980) Investigations on several EEG-parameters as indicators of the state of anaesthesia; the median–a quantitative measure of the depth of anaesthesia. Anaesth Intensivther Notfallmed 15: 279–286 (in German)CrossRefGoogle Scholar
  114. 114.
    Shapiro HM (1986) Anesthesia effects upon cerebral blood flow, cerebral metabolism, and the electroencephalogram. In: Miller R (ed) Anesthesia, vol II. Churchill Livingstone, Edinburgh, pp 795–824Google Scholar
  115. 115.
    Siesjö BK (1978) Brain energy metabolism. Wiley, ChichesterGoogle Scholar
  116. 116.
    Siesjö BK (1981) Cell damage in the brain: a speculative synthesis. J Cereb Blood Flow Metabol 1: 155–185CrossRefGoogle Scholar
  117. 117.
    Simons AJR, Pronk RAF (1983) Automatic EEG monitoring during anesthesia. In: Prakash O, Mey SH, Patterson RW (eds) Computing in anesthesia and intensive care. Nijhof, The Hague, pp 227–257CrossRefGoogle Scholar
  118. 118.
    Smith AL, Wollmann H (1972) Cerebral blood flow and metabolism: Effects of anesthetic drugs and techniques. Anesthesiology 36: 378PubMedCrossRefGoogle Scholar
  119. 119.
    Sotaniemi KA, Sulg IA, Hokkanen TE (1980) Quantitative EEG as a measure of cerebral dysfunction before and after open-heart surgery. Electroenceph Clin Neurophysiol 50: 81–95PubMedCrossRefGoogle Scholar
  120. 120.
    Sotaniemi KA (1980) Cerebral disorders in open-heart surgery patients. A neurological, electroencephalographical and neuropsychological follow-up study. Thesis. Acta Universit Oulu (Finland) series D, no 56Google Scholar
  121. 121.
    Steen P, Michenfelder JD (1979) Neurotoxicity of anesthetics. Anesthesiology 50: 437–453PubMedCrossRefGoogle Scholar
  122. 122.
    Stigsby B, Obrist WD, Sulg IA (1973) Automatic data acquisition and period-amplitude analysis of the EEG. Comput Programs Biomed 3: 93–104PubMedCrossRefGoogle Scholar
  123. 123.
    Stockard JJ, Bickford RB, Schauble JF (1973) Pressure-dependent cerebral ischemia during cardiopulmonary bypass. Neurology 23: 521–529PubMedCrossRefGoogle Scholar
  124. 124.
    Stockard JJ, Bickford RG, Smith TN, Saidman LJ, France CJ (1973) Structure-activity relationships of ether anesthetics: an electroencephalographic study of diethyl ether, fluoxene, isoflurane and enflurane. Electroenceph Clin Neurophysiol 34: 713Google Scholar
  125. 125.
    Stockard J, Calanchini P, Pickford R, Billinger T (1974) Electroencephalographic seizures during and after cardiopulmonary bypass. J Neurol Neurosurg Psychiat 37: 181–190PubMedCrossRefGoogle Scholar
  126. 126.
    Stockard JJ, Calverly R, Myers RR, Smith TN (1975) Electrographic seizures induced by fluroxene, diethyl ether and enflurane in man and cats. Electroenceph Clin Neurophysiol 38: 97CrossRefGoogle Scholar
  127. 127.
    Stoeckel H, Schwilden H (1987) Comparative pharmacodynamics of halogenated anesthetics: quantitative EEG analysis to objectify central nervous effects. In: Peter K, Brown BR, Martin E, Norlander O (eds) Inhalation anesthetics, new aspects. Springer, Berlin Heidelberg New York, pp 26–32CrossRefGoogle Scholar
  128. 128.
    Stullken EH, Milde JH, Michenfelder JD (1977) The nonlinear response of cerebral metabolism to low concentrations of halothane, enflurane, isoflurane and thiopental. Anesthesiology 46: 28–34PubMedCrossRefGoogle Scholar
  129. 129.
    Sulg IA, Dencker SJ (1968) Electroencephalographic findings in MZ twin pairs, discordant for closed head injury. Acta Genet Med Gemellol 17: 389–401PubMedGoogle Scholar
  130. 130.
    Sulg IA (1969) The quantitated EEG as a measure of brain dysfunction. Thesis, University of Lund (Sweden)Google Scholar
  131. 131.
    Sulg IA, Lindgren G, Stigsby B (1969) Statistical evaluation of EEG data derived by period and amplitude analysis. A computer study. Comput Progr Biomed 1: 20–31Google Scholar
  132. 132.
    Sulg IA, Ingvar DH (1970) Data reduction in EEG monitoring. Proc Annu Meet Aerospace, Med Assoc, St Louis, pp 27-32Google Scholar
  133. 133.
    Sulg IA, Hokkanen TE, von Post B, Reunanen M (1977) Computerized quantitative multiparameter analysis of the EEG. In: Sicuteri F (ed) Headache: new vistas. Biomedical, Florence, pp 213–224Google Scholar
  134. 134.
    Sulg IA, Hokkanen TE, Hollmen AI (1977) Simultaneous monitoring of perfusion pressure and quantitative EEG in anesthesia and in other conditions with risk for hypoxia. In: den Hartog-Jager WA, Bruyn GW, Heystee APJ (eds) 11th World Congress of Neurology. Excerpta Medica, Amsterdam, p 152Google Scholar
  135. 135.
    Sulg IA, Sotaniemi KA, Tolonen U, Hokkanen E (1981) Dependence between cerebral metabolism and blood flow as, reflected in the quantitative EEG. In: Mendlewicz J, van Praag HM (eds) Adv Biol Psychiat, vol 6. Karger, Basel, pp 102–108Google Scholar
  136. 136.
    Sulg IA, Hollmén AI, Tammisto T, Hokkanen ET (1982) Quantitative neuro-monitoring in intensive care and in anesthesia. In: Advances in neurotraumatology. Internat Congress Series, no 612. Excerpta Medica, Amsterdam, pp 235–237Google Scholar
  137. 137.
    Sulg IA (1984) Quantitative EEG as a measure of brain dysfunction. In: Pfurtscheller G, Jonkman EJ, Lobes da Silva FH (eds) Brain ischemia: quantitative EEG and imaging techniques. Progr Brain Res 62: 65–84Google Scholar
  138. 138.
    Sulg IA, Stenseth R, Hotvedt R (1987) Experiences with the Anesthesia & Brain Monitor (ABM) in peroperative and in intensive care monitoring. Abstracts from heart & brain seminar. University of Tromsø, pp 78-79Google Scholar
  139. 139.
    Symon L (1970) Flow thresholds in brain ischemia and the effect of drugs. Br J Anaesth 57: 34CrossRefGoogle Scholar
  140. 140.
    Symon L (1970) Regional cerebrovascular responses to acute ischemia in normocapnia and hypercapnia. An experimental study in baboons. J Neurol Neurosurg Psychiat 33: 756–762PubMedCrossRefGoogle Scholar
  141. 141.
    Takeshita H, Okuda V, Sari A (1972) The effects of ketamine on cerebral circulation and metabolism in man. Anesthesiology 36: 69–75PubMedCrossRefGoogle Scholar
  142. 142.
    Tarkkanen L, Laitinen L, Johansson G (1974) Effects of d-tubocurarine on intracranial pressure and thalamic electrical impedance. Anesthesiology 40: 247–251PubMedCrossRefGoogle Scholar
  143. 143.
    Thomas WF, Cole PV, Etherington NJ, Prior PF, Stefansson SB (1985) Electrical activity of the cerebral cortex during induced hypotension in man: a comparison of sodium nitroprusside and trimetaphan. Br J Anaesth 57: 134–141PubMedCrossRefGoogle Scholar
  144. 144.
    Thompson GE (1972) Ketamine-induced convulsions. Anesthesiology 37: 662–663PubMedCrossRefGoogle Scholar
  145. 145.
    Tolonen U, Sulg IA (1981) Comparison of quantitative EEG parameters from four different analysis techniques in evaluation of relationships between EEG and CBF in brain infarction. J Electroenceph Clin Neurophysiol 51: 177–185CrossRefGoogle Scholar
  146. 146.
    Trojaborg W, Boysen G (1973) Relation between EEG, regional cerebral blood flow and internal carotis artery pressure during carotid endarterectomy. Electroenceph Clin Neurophysiol 34: 61–69PubMedCrossRefGoogle Scholar
  147. 147.
    Ty Smith N, Rampil IJ, Sasse FJ, Hoff BH, Flemmings DC (1979) EEG during rapidly changing halothane or enflurane. Anesthesiology 51: 35–54CrossRefGoogle Scholar
  148. 148.
    Wark KJ, Sebel PS, Verghese C, Maynard DE, Evans SJ (1986) The effect of halothane on cerebral electrical activity. An assessment using the cerebral function analysing monitoring (CFAM). Anaesthesia 41: 390–394PubMedCrossRefGoogle Scholar
  149. 149.
    Witoszka M, Tamura H, Indeglia R, Hopkins RW, Simeone FA (1973) Electroencephalographic changes and cerebral complications in open heart surgery. J Thorpe Cardiovasc Surg 66: 855–864Google Scholar
  150. 150.
    Wolfson B, Siker ES, Ciccarelli HE, Gray GH Jr, Jones L (1967) The electroencephalogram as a monitor of arterial blood levels of methoxyflurane. Anesthesiology 28:1003–1009PubMedCrossRefGoogle Scholar
  151. 151.
    Wollmann H, Stephen GW, Clement AJ, Danielson GK (1966) Cerebral blood flow in man during extracorporeal circulation. J Thorac Cardiovasc Surg 52: 558–564Google Scholar
  152. 152.
    Wollmann H, Alexander SC, Cohen PJ, Smith TC, Chase PE, Vander Molen RA (1965) Cerebral circulation during general anesthesia and hyperventilation in man. Thiopental induction to nitrous oxide and d-tubocurarine. Anesthesiology 26:329CrossRefGoogle Scholar
  153. 153.
    Wollmann H, Smith TC, Stephen GW, Colton ET, Gleaton HE, Alexander SC (1968) Effects of extremes of respiratory and metabolic alkalosis on cerebral blood flow in man. J Appl Physiol 24: 60Google Scholar
  154. 154.
    Yamamura T, Fukuda M, Takeya txy Goto Y, Furukawa K (1981) Fast oscillatory EEG activity induced by analgesic concentration of nitrous oxide in man. Anesth Analg 60: 283–288PubMedCrossRefGoogle Scholar
  155. 155.
    Young WL, Ornstein E (1985) Compressed spectral array during cardiac arrest and ressuscitation. Anesthesiology 62:535–538PubMedCrossRefGoogle Scholar
  156. 156.
    Zaret BS (1985) Prognostic and neurophysiological implications of concurrent burst suppression and alphá pattern in the EEG of post-anoxic coma. Electroenceph Clin Neurophysiol 61: 199–209PubMedCrossRefGoogle Scholar
  157. 157.
    Zetterberg LH (1969) Estimation of parameters for a linear difference equation with application to EEG analysis. Math Biosci 5:227–275CrossRefGoogle Scholar
  158. 158.
    Zwetnow NN (1968) Cerebral blood flow and autoregulation of blood pressure and intracranial pressure variations. Scand J Clin Lab Invest [Suppl] 102Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • I. A. Sulg

There are no affiliations available

Personalised recommendations