Skip to main content

The Effect of Intrathoracic Pressure on the Failing Heart

  • Chapter
  • 91 Accesses

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 6))

Abstract

Although it has been appreciated for centuries that under normal conditions increases in intrathoracic pressure (ITP) decrease cardiac output [1], only recently has it been realized that in the failing heart similar increases in ITP may have a different effect [2]. Over the past thirty years, our understanding of the effect of increasing ITP on the failing heart has greatly increased. This report will discuss selective aspects of the recent data on the effects of ITP on left ventricular (LV) function and cardiac output during heart failure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Valsalva AM (1707) De Aure Humana

    Google Scholar 

  2. Sharpey-Schafer EP (1955) Effects of Valsalva’s maneuver on the normal and failing circulation. Br Med J 1: 693–695

    Article  PubMed  CAS  Google Scholar 

  3. Permutt S (1973) Physiologic changes in the acute asthmatic attack. In: Austen KF, Lichtenstein LM (eds) Asthma-physiology, immunology and treatment. Academic Press, New York, pp 15–24

    Google Scholar 

  4. Weber KT, Janicki JS, Hunter WC, Schroff S, Pearlman ES, Fishman AP (1982) The contractile behavior of the heart and its function coupling to the circulation. Prog Cardiovasc Dis 24: 375–400

    Article  PubMed  CAS  Google Scholar 

  5. Sarnoff SJ (1955) Myocardial contractility as described by ventricular function curves, observations on Starling’s law of the heart. Physiol Rev 35: 107–122

    PubMed  CAS  Google Scholar 

  6. Pinsky MR (1984) Instantaneous venous return curves in an intact canine preparation. J Appl Physiol 56: 765–771

    PubMed  CAS  Google Scholar 

  7. Pinsky MR (1984) Determinants of pulmonary arterial flow variation during respiration. J Appl Physiol 56: 1237–1245

    Article  PubMed  CAS  Google Scholar 

  8. Vesprille A, Jansen JRC (1985) Mean systemic filling pressure as a characteristic pressure for venous return. Pflugers Arch 405: 226–233

    Article  Google Scholar 

  9. Brecker GA, Hubay CA (1955) Pulmonary blood flow and venous return during spontaneous respiration. Circ Res 3: 210–214

    Google Scholar 

  10. Brinker JA, Weiss JL, Lappe DL, et al (1980) Leftward septal displacement during right ventricular loading in man. Circulation 61: 626–633

    PubMed  CAS  Google Scholar 

  11. Summer WR, Permutt S, Sagawa K, Shoukas AA, Bromberger-Barnea B (1979) Effects of spontaneous respiration on canine left ventricular function. Circ Res 45: 719–728

    PubMed  CAS  Google Scholar 

  12. Scharf SM, Brown R, Saunders N, Green LH (1979) Effects of normal and loaded spontaneous inspiration on cardiovascular function. J Appl Physiol 47: 582–590

    PubMed  CAS  Google Scholar 

  13. Taylor RR, Covell JW, Sonnenblick EH, Ross J Jr (1967) Dependence of ventricular distensibility on filling of the opposite ventricle. Am J Physiol 213: 711–718

    PubMed  CAS  Google Scholar 

  14. Pinsky MR, Summer WR, Wise RA, Permutt S, Bromberger-Barnea B (1983) Augmentation of cardiac function by elevation of intrathoracic pressure. J Appl Physiol 54: 950–955

    PubMed  CAS  Google Scholar 

  15. Scharf SM, Caldini P, Ingram RH Jr (1977) Cardiovascular effects of increasing airway pressure in the dog. Am J Physiol 232: H35 - H43

    PubMed  CAS  Google Scholar 

  16. Courand A, Motley HL, Werko L, Richards DW Jr (1948) Physiological studies of the effects of intermittent positive-pressure breathing on cardiac output in man. Am J Physiol 152: 162–174

    Google Scholar 

  17. Pinsky MR, Matuschak GM, Klain M (1985) Determinants of cardiac augmentation by elevations in intrathoracic pressure. J Appl Physiol 58: 1189–1198

    PubMed  CAS  Google Scholar 

  18. Morgan BC, Abel FL, Mullins GL, Guntheroth GW (1966) Flow patterns in cavae, pulmonary artery, pulmonary vein, and aorta in intact dogs. Am J Physiol 20: 865–877

    Google Scholar 

  19. Brower R, Wise RA, Hassapoyannes C, Bromberger-Barnea B, Permutt S (1985) Effect of lung inflation on lung blood volume and pulmonary venous flow. J Appl Physiol 58: 954–963

    Article  PubMed  CAS  Google Scholar 

  20. Sylvester JT, Mitzner W, Ngeow Y, Permutt S (1983) Hypoxic constriction of alveolar and extra-alveolar vessels in isolated pig lungs. J Appl Physiol 54: 1660–1666

    PubMed  CAS  Google Scholar 

  21. Lloyd TC Jr (1982) Mechanical cardiopulmonary interdependence. J Appl Physiol 52: 333–339

    PubMed  Google Scholar 

  22. Sunagawa K, Maughan WL, Burkhoff D, Sagawa K (1983) Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol 245: H773 - H780

    PubMed  CAS  Google Scholar 

  23. Suga H, Sagawa K (1974) Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res 35: 117–128

    PubMed  CAS  Google Scholar 

  24. Grossman W, Braunwald E, Mann T, McLaurin LP, Green LH (1977) Contractile state of the left ventricle in man as evaluated from end-systolic pressure-volume relations. Circulation 56: 845–852

    PubMed  CAS  Google Scholar 

  25. Buda AJ, Pinsky MR, Ingels NB, Daughters GT, Stinson EB, Alderman EL (1979) Effect of intrathoracic pressure on left ventricular performance. N Engl J Med 301: 453–459

    Article  PubMed  CAS  Google Scholar 

  26. Strohl KP, Scharf SM (1980) Letter to the editor. N Engl J Med 302: 235–236

    PubMed  CAS  Google Scholar 

  27. Rankin JS, Olsen CO, Arentzen CE, et al (1982) The effects of airway pressure on cardiac function in intact dogs and man. Circulation 66: 108–120

    Article  PubMed  CAS  Google Scholar 

  28. Olsen CO, Tyson GS, Maier GW, Spratt JA, Davis JW, Rankin JS (1983) Dynamic ventricular interaction in the conscious dog. Circ Res 52: 85–104

    PubMed  CAS  Google Scholar 

  29. Robotham JL, Mitzner W (1979) A model of the effects of the left ventricle. J Appl Physiol 46: 411–418

    PubMed  CAS  Google Scholar 

  30. Robotham JL, Rabson J, Permutt S, Bromberger-Barnea B (1979) Left ventricular hemodynamics during respiration. J Appl Physiol 47: 1295–1303

    PubMed  CAS  Google Scholar 

  31. Scharf SM, Brown R, Tow DE, Parisi AF (1979) Cardiac effects of increased lung volume and decreased pleural pressure in man. J Appl Physiol 47: 257–262

    PubMed  CAS  Google Scholar 

  32. Scharf SM, Bianco JA, Tow DE, Brown R (1981) The effects of large negative intrathoracic pressure on left ventricular function in patients with coronary artery disease. Circulation 63: 871–875

    Article  PubMed  CAS  Google Scholar 

  33. Buda AJ, MacKenzie GW, Wigle ED (1981) Effect of negative intrathoracic pressure on left ventricular outflow tract obstruction in muscular subaortic stenosis. Circulation 63: 875–881

    Article  PubMed  CAS  Google Scholar 

  34. Guzman PA, Maughan WL. Lin FCP, et al (1981) Transeptal pressure gradient with leftward septal displacement during the Mueller maneuver in man. Br Heart J 46:657–662

    Article  PubMed  CAS  Google Scholar 

  35. Reddy PS, Curtis EL, O’Toole JD, Shaver JA (1971) Cardiac tamponade: Hemodynamic observations in man. Circulation 58: 265–272

    Google Scholar 

  36. Sibbald WJ, Driedger AA, Meyers ML, Short AIK, Wells GA (1983) Biventricular function in the adult respiratory distress syndrome. Hemodynamic and radionuclide assessment with special emphasis on right ventricular function. Chest 84: 126–134

    Article  PubMed  CAS  Google Scholar 

  37. Wallis TW, Robotham JL, Compean R, Krindred MK (1983) Mechanical heart-lung ineractions with positive end-expiratory pressure. J Appl Physiol 54: 1039–1047

    PubMed  CAS  Google Scholar 

  38. Conzanitis DA, Leijala M, Pesoner E, Saki HA (1982) Acute pulmonary edema due to laryngeal spasm. Anaesthesia 37: 1198–1199

    Article  Google Scholar 

  39. Jackson FN, Rowland V, Corssen G (1980) Laryngospasm-induced pulmonary edema. Chest 78: 819–824

    Article  PubMed  CAS  Google Scholar 

  40. Leatherman JW, Schwartz S (1983) Pulmonary edema due to upper airway obstruction. South Med J 76: 1058–1060

    Article  PubMed  CAS  Google Scholar 

  41. Lee KWT, Downes JJ (1983) Pulmonary edema secondary to laryngospasm in children. Anesthesiology 59: 347–349

    Article  PubMed  CAS  Google Scholar 

  42. Oswalt CE, Gates GA, Holstrom FMG (1977) Pulmonary edema as a complication of acute upper airway obstruction. JAMA 238: 1833–1835

    Article  PubMed  CAS  Google Scholar 

  43. Poulton TJ (1981) Laryngospasm-induced pulmonary edema. Chest 80: 762–763

    Article  PubMed  CAS  Google Scholar 

  44. Stradling JR, Bolton P (1982) Upper airways obstruction as cause of pulmonary edema. Lancet 1: 1353–1354

    Article  PubMed  CAS  Google Scholar 

  45. Sofer S, Bar-Ziv J, Scharf SM (1984) Pulmonary edema following relief of upper airway obstruction. Chest 86: 401–403

    Article  PubMed  CAS  Google Scholar 

  46. Travis KW, Todrea ID, Shannon DC (1977) Pulmonary edema associated with croup and epiglottitis. Pediatrics 59: 695–698

    PubMed  CAS  Google Scholar 

  47. Stalcup SA, Mellins RB (1977) Mechanical forces producing pulmonary edema in acute asthma. N Engl J Med 297: 592–596

    Article  PubMed  CAS  Google Scholar 

  48. Loyd JE, Nolop KB, Parker RE, Roselli RJ, Brigham KL (1986) Effects of inspiratory resistance loading on lung fluid balance in awake sheep. J Appl Physiol 60: 198–203

    PubMed  CAS  Google Scholar 

  49. Guyton AC, Lindsey AW, Abernathy B, Richardson T (1957) Venous return at various right atrial pressures and the normal venous return curve. Am J Physiol 189: 609–615

    PubMed  CAS  Google Scholar 

  50. Ting EY, Hong SK, Rahn H (1960) Cardiovascular responses of man during negative-pressure breathing. J Appl Physiol 15: 557–560

    PubMed  CAS  Google Scholar 

  51. Wise RA, Robotham JL (1987) Determinants of inferior vena cava ( IVC) blood flow with changes in abdominal pressure. Am Rev Respir Dis 135: A115

    Google Scholar 

  52. Polianski JM, Huchon GJ, Gaudebout CC, Newth CJL, Murray JF (1986) Pulmonary and systemic effects of increased negative inspiratory intrathoracic pressure in dogs. Am Rev Respir Dis 133: 49–54

    PubMed  CAS  Google Scholar 

  53. Rebuck AS, Read J (1971) Assessment and management of severe asthma. Am J Med 51: 788–798

    Article  PubMed  CAS  Google Scholar 

  54. Räsänen J, Nikki P, Heikkila J (1984) Acute myocardial infarction complicated by respiratory failure. The effects of mechanical ventilation. Chest 85: 21–28

    Article  PubMed  Google Scholar 

  55. Räsänen J, Heikkila J, Downs J, Nikki P, Vaisanen I, Viitanen A (1985) Continuous positive airway pressure by face mask in acute cardiogenic pulmonary edema. Am J Cardiol 55: 296–300

    Article  PubMed  Google Scholar 

  56. Räsänen J, Vaisanen IT, Heikkila J, Nikki P (1985) Acute myocardiac infarction complicated by left ventricular dysfunction and respiratory failure. Chest 87: 158–162

    Article  PubMed  Google Scholar 

  57. Beach T, Millen E, Grenvik A (1973) Hemodynamic response to discontinuance of mechanical ventilation. Crit Care Med 1: 85–90

    Article  PubMed  CAS  Google Scholar 

  58. Guyton AC (1963) Effect of cardiac output by respiration, opening the chest, and cardiac tramparade. In: Guyton AC, Jones CE, Coleman CE (eds) Circulatory physiology: cardiac output and its regulation. Saunders, Philadelphia, pp 378–386

    Google Scholar 

  59. Braunwald E, Binion JT, Morgan WL, Sarnoff SJ (1957) Alterations in central blood volume and cardiac output induced by positive-pressure breathing and counteracted by metaraminol ( Aramine ). Circ Res 5: 670–675

    PubMed  CAS  Google Scholar 

  60. Dhainaut JF, Devaux JY, Monsallier JF, Brunet F, Villemant D, Huyghebaert MF (1986) Mechanisms of decreased left ventricular preload during continuous positive-pressure ventilation in ARDS. Chest 90: 74–80

    Article  PubMed  CAS  Google Scholar 

  61. Robotham JL, Bell RC, Badke FR, Kindred MK (1985) Left ventricular geometry during positive end-expiratory pressure in dogs. Crit Care Med 13: 617–624

    Article  PubMed  CAS  Google Scholar 

  62. Visner MS, Arentzen CE, O’Conner MJ, Larson EV, Anderson RW (1983) Alterations in left ventricular three-dimensional dynamic geometry and systolic function during acute right ventricular hypertension in conscious dog. Circulation 67: 353–365

    Article  PubMed  CAS  Google Scholar 

  63. Wise RA, Robotham JL, Summer WR (1981) Effects of spontaneous ventilation on the circulation. Lung 159: 175–192

    Article  PubMed  CAS  Google Scholar 

  64. Rudikoff MT, Maughan WL, Effron M, Freund P, Weisfeldt ML (1980) Mechanisms of blood flow during cardiopulmonary resuscitation. Circulation 61: 345–352

    PubMed  CAS  Google Scholar 

  65. Criley JM, Blaufuss AH, Kissel GL (1976) Cough-induced cardiac compression. JAMA 263: 1246–1249

    Article  Google Scholar 

  66. Pouleur H, Covell JW, Ross J Jr (1980) Effects of nitroprusside on venous return and central blood volume in the absence and presence of acute heart failure. Circulation 61: 328–337

    Google Scholar 

  67. Chatterjee K, Parmley WW, Ganz W, et al (1973) Hemodynamic and metabolic responses to vasodilator therapy in acute myocardial infarction. Circulation 48: 1183–1192

    PubMed  CAS  Google Scholar 

  68. da Luz PL, Forrester JS, Wyatt HL, et al (1975) Hemodynamic and metabolic effects of sodium nitroprusside on the performance and metabolism of regional ischemic myocardium. Circulation 52: 400–408

    PubMed  CAS  Google Scholar 

  69. Pagani M, Vatner SF, Braunwald E (1978) Hemodynamic effects of intravenous sodium nitroprusside in the conscious dog. Circulation 57: 144–151

    PubMed  CAS  Google Scholar 

  70. Qvist J, Pontoppidan H, Wilson RS, Lowenstein E, Lauer MB (1975) Hemodynamic responses to mechanical ventilation with PEEP. Anesthesiology 42: 45–55

    Article  PubMed  CAS  Google Scholar 

  71. Pinsky MR, Summer WR (1983) Cardiac augmentation by phasic high intrathoracic pressure support in man. Chest 84: 370–375

    Article  PubMed  CAS  Google Scholar 

  72. Calvin JE, Driedger AA, Sibbald WJ (1981) Positive end-expiratory pressure ( PEEP) does not depress left ventricular function in patients with pulmonary edema. Am Rev Respir Dis 124: 121–128

    PubMed  CAS  Google Scholar 

  73. Grace MP, Greenbaum DM (1982) Cardiac performance in response to PEEP in patients with cardiac dysfunction. Crit Care Med 10: 358–360

    Article  PubMed  CAS  Google Scholar 

  74. Mathru M, Rao TLK, Eletr AA, Pifarre R (1982) Hemodynamic response to changes in ventilatory pattern in patients with normal and poor left ventricular reserve. Crit Care Med 10: 423–426

    Article  PubMed  CAS  Google Scholar 

  75. Pinsky MR, Matuschak GM, Bernardi L, Klain M (1986) Hemodynamic effects of cardiac cycle-specific increases in intrathoracic pressure. J Appl Physiol 60: 604–612

    PubMed  CAS  Google Scholar 

  76. Otto CW, Quan SF, Conahan TJ, Calkin JM, Waterson CK, Hameroff SR (1982) Jet pulse characteristics for high frequency jet ventilation. Anesth Analg 61: 293–304

    Google Scholar 

  77. Pinsky MR, Marquez J, Martin D, Klain M (1987) Ventricular assist by cardiac cycle-specific increases in intrathoracic pressure. Chest 91: 709–715

    Article  PubMed  CAS  Google Scholar 

  78. Maclntyre NR (1987) The effects of jet ventilation synchronized to cardiac systole in MICU patients. Chest 92: 665

    Google Scholar 

  79. Snyder JV, Pinsky MR (eds) (1987) Oxygen transport in the critically ill. Yearbook Medical Publishers

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pinsky, M.R. (1988). The Effect of Intrathoracic Pressure on the Failing Heart. In: Perret, C., Vincent, J.L. (eds) Acute Heart Failure. Update in Intensive Care and Emergency Medicine, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83453-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83453-0_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-19169-8

  • Online ISBN: 978-3-642-83453-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics