Skip to main content

Possible Mechanisms of O2 Sensing in Different Cell Types

  • Chapter

Abstract

The human organism needs a continuous supply of oxygen to maintain its specific cell functions under different working conditions, for example, a suitable heart rate, a well-modulated excretory capacity of the kidneys, or an appropriate activity of the central nervous system. Oxygen is a vital substrate for the human body, for no metabolic pathway can generate this substance for the organism. It seems to be, therefore, reasonable to assume that the different organs have developed mechanisms to guarantee a constant oxygen supply. That means, besides its role as electron receptor in the respiratory chain, oxygen is involved as a signal in different physiological reactions. This process is defined as oxygen sensing and describes why cells are able to respond to PO2 changes by altering the corresponding metabolic and membrane properties in order to regulate cell-specific activities and to maintain a regular function. To elucidate the mechanisms of the O2 sensing process this article first describes this phenomenon in different biological systems to continue with a description of its basic properties. The article will be summarized by a model, which may help to stimulate further discussion about O2 sensing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acker H (1980) The meaning of tissue PO2 and local blood flow for the chemoreceptive process of the carotid body. Fed Proc 39: 2641–2647

    PubMed  CAS  Google Scholar 

  2. Acker H (1983) Tissue oxygen transport in health and disease. In: Pallot DJ (ed) Control of respiration. Croom Helm, London, pp 157–202

    Chapter  Google Scholar 

  3. Acker H, Eyzaguirre C (1987) Light absorbance changes in the mouse carotid body during hypoxia and cyanide poisoning. Brain Res 409: 380–385

    Article  PubMed  CAS  Google Scholar 

  4. Acker H, Lübbers DW (1977) The kinetic of local tissue PO2 decrease after perfusion stop within the carotid body of the cat in vivo and in vitro. Pflügers Arch 369:135–140

    Article  PubMed  CAS  Google Scholar 

  5. Acker H, Starlinger H (1984) Adenosine triphosphate content in the cat carotid body under different arterial O2 and CO2 conditions. Neurosci Lett 50:175–179

    Article  PubMed  CAS  Google Scholar 

  6. Acker H, Carlsson J, Durand R, Sutherland RM (eds) (1984) Spheroids in cancer research. Recent results in cancer research, vol 95. Springer, Berlin Heidelberg New York

    Google Scholar 

  7. Acker H, Pietruschka F, Dufau E (1987a) The effect of hypoxia and cyanide on intracellular calcium in cloned endothelial cells of brain microvessels. Pflügers Arch 408: R72

    Google Scholar 

  8. Acker H, Carlsson J, Holtermann G, Nedermann Th, Nylen T (1987b) Influence of glucose and buffer capacity in the culture medium on growth and pH in spheroids of human thyroid carcinoma and human glioma origin. Cancer Res 47: 3504–3508

    PubMed  CAS  Google Scholar 

  9. Anichkov SK, Belinki MR (eds) (1963) Pharmacology of the carotid body chemoreceptors. Pergamon, Oxford

    Google Scholar 

  10. Biscoe T (1971) Carotid body: structure and function. Physiol Rev 51: 437–495

    PubMed  CAS  Google Scholar 

  11. Busa WB, Nuccitelli R (1984) Metabolic regulation via intracellular pH. Am J Physiol 246: R409–R438

    PubMed  CAS  Google Scholar 

  12. Delpiano MA, Acker H (1985) Extracellular pH changes in the superfused cat carotid body during hypoxia and hypercapnia. Brain Res 342: 273–280

    Article  PubMed  CAS  Google Scholar 

  13. Grönblad M, Akerman KE, Eränko O (1979) Induction of exocytosis from glomus cells by incubation of the carotid body of the rat with calcium and ionophore A23187. Anat Rec 195: 387–395

    Article  PubMed  Google Scholar 

  14. Hebbel RP, Shalev O, Foker W, Rank BH (1986) Inhibition of erythrocyte Ca2+ ATPase by activated oxygen through thiol- and lipid-dependent mechanisms. Biochim Biophys Acta 862: 8–16

    Article  PubMed  CAS  Google Scholar 

  15. Joels M, Neil E (1963) The excitation mechanism of the carotid body. Br Med Bull 19: 21–2416

    PubMed  CAS  Google Scholar 

  16. Jones DP (1986) Renal metabolism during normoxia, hypoxia and ischemic injury. Annu Rev Physiol 48: 33–50

    Article  PubMed  CAS  Google Scholar 

  17. Krebs HA (1972) The Pasteur effect in the relation between respiration and fermentation. Essays Biochem 8:1–34

    PubMed  CAS  Google Scholar 

  18. L’Allemain GL, Franchi A, Cragoe E, Pouyssegur J (1984) Blockade of the Na+/H+ antiport abolishes growth factor induced DNA synthesis in fibroblasts. J Biol Chem 259:4314–4319

    Google Scholar 

  19. Lash HL, Jones DP, Orrenius ST (1984) The renal thiol (glutathione) oxidase subcellular localization and properties. Biochim Biophys Acta 779:191–200

    Article  PubMed  CAS  Google Scholar 

  20. Leitner LM, Liaubet MJ (1971) Carotid body oxygen consumption of the cat in vitro. Pflügers Arch 323:315–322

    Article  PubMed  CAS  Google Scholar 

  21. Lindy S, Rajasalin M (1966) Lactate dehydrogenase isoenzymes of chicken embryo: response to variations of ambient oxygen tension. Science 153:1401–1403

    Article  PubMed  CAS  Google Scholar 

  22. Mulligen E, Lahiri S, Storey BT (1981) Carotid body O2 chemoreception and mitochondrial oxidative phosphorylation. J Appl Physiol 51: 438–446

    Google Scholar 

  23. Nicholls DG (1982) Bioenergetics: an introduction to the chemiosmotic theory. Academic, London

    Google Scholar 

  24. Papaconstantinou J, Colowick SP (1961) The role of glycolysis in the growth of tumour cells I. Effects of oxamine acids on the metabolism of Ehrlich ascites tumor cells in vitro. J Biol Chem 236: 278–284

    PubMed  CAS  Google Scholar 

  25. Petrova NU (1974) Effect of hypoxia on the lactate dehydrogenase isoenzyme composition in the rat carotid body. Bull Exp Biol Med 78:1005–1006

    Article  Google Scholar 

  26. Pietruschka F, Acker H (1986) Production of angiogenetic factors by tumour cells growing in spheroid or monolayer cultures. Eur J Cell Biol 42: 48

    Google Scholar 

  27. Pouysségur J (1985) The growth factor activatable Na+/H+ exchange system: a genetic approach. Trends Biochem Sci 2: 453–455

    Article  Google Scholar 

  28. Probst H, Gekeler V, Helftenbein E (1984) Oxygen dependence of nuclear DNA replication in Ehrlich ascites cells. Exp Cell Res 154: 327–341

    Article  PubMed  CAS  Google Scholar 

  29. Purves MJ (1970) The effect of hypoxia, hypercapnia and hypotension upon carotid body blood flow and oxygen consumption in the cat. J Physiol (Lond) 209: 395–416

    CAS  Google Scholar 

  30. Schollenmeyer P, Klingenberg M (1962) Über den Cytochromgehalt tierischer Gewebe. Biochem Z 335: 426–439

    Google Scholar 

  31. Schonbaum GR, Bonner WD, Storey PT, Bahr JT (1971) Specific inhibition of the cyanide-insensitive respiratory pathway in plant mitochondria by hydoxamic acids. Plant Physiol (Bethesda) 42:124–128

    Article  Google Scholar 

  32. Schulz J, Stolze HH (1980) The exocine pancreas. The role of secretagogues cyclic nucleotides and calcium in enzyme secretion. Annu Rev Physiol 42: 127–156

    Article  PubMed  CAS  Google Scholar 

  33. Seidl E, Acker H, Teckhaus L (1979) Quantitative Erfassung des Gefäßvolumens des Glomus caroticum der Katze unter den Bedingungen der Normoxie, Hypoxie und Hypercapnie. Microsc Acta 3: 185–189

    Google Scholar 

  34. Sies H (1977) Peroxisomal enzymes and oxygen metabolism in liver. In: Reivich M, Coburn R, Lahiri S, Chance B (eds) Tissue hypoxia and ischemia. Plenum, New York, pp 51–65

    Chapter  Google Scholar 

  35. Starlinger H, Acker H (1986) The norepinephrine and dopamine content of the cat carotid body in vivo under normoxic an hypoxic conditions. Neurosci Lett 64: 65–68

    Article  PubMed  CAS  Google Scholar 

  36. Starlinger H, Lübbers DW (1973) Polarographic measurements of the oxygen pressure performed simultaneously with optical measurements of the redox state of the respiratory chain in suspension of mitochondria under steady state conditions at low oxygen tension. Pflügers Arch 341: 15–22

    Article  PubMed  CAS  Google Scholar 

  37. Vivekanadan S, Ramalakara Rao AP, Schwam R, Ranaka TS (1982) Sequential determination of cerebrospinal fluid lactate dehydrogenase isoenzyme in human brain tumours as treatment. Acta Neurol Scand 66: 347–354

    Article  Google Scholar 

  38. Warburg OH (1962) New methods of cell physiology. Thieme, Stuttgart

    Google Scholar 

  39. Weigelt H, Fujü F, Lübbers DW, Hauck G (1981) Specialized endothelial cell in frog mesentery. Attempt of an electrophysiological characterization. Bibl Anat 20: 89–93

    Google Scholar 

  40. Whalen WJ, Nair P, Sidebotham T, Spander J, Lacerna M (1981) Cat carotid body. Oxygen consumption and other parameters. J Appl Physiol 50: 129–133

    PubMed  CAS  Google Scholar 

  41. Wilson DF, Owen CS, Erecinska M (1979) Quantitative dependence of mitochondrial oxidative phosphorylation on oxygen concentration: a mathematical model. Arch Biochem 195: 494–504

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Acker, H. (1988). Possible Mechanisms of O2 Sensing in Different Cell Types. In: Acker, H. (eds) Oxygen Sensing in Tissues. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83444-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83444-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83446-2

  • Online ISBN: 978-3-642-83444-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics