Skip to main content

PO2-Induced Changes of Membrane Potential and Tension in Vascular Smooth Musculature

  • Chapter

Abstract

That a decrease in oxygen tension leads to vasodilatation has been known from the literature for a long time. Mechanical measurements demonstrate that hypoxia effects relaxation of vascular strips [8, 9,10, 33], vasodilatation in perfused vessels [5, 6, 7,11], or an increase in blood flow [3, 4,13,17,19, 32]. Electrophysiological investigations during oxygen deficiency, especially intracellular measurements of the membrane potential of vascular smooth muscle cells, do not exist. It has been reported merely that a PO2 decrease in the rat portal vein restricts spontaneous spike discharges and finally causes their complete cessation [16]. Johansson and Somlyo [18] supposed that vasodilatation with hypoxia possibly has an electrophysiological correlate.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arfors K-E (1988) Free radicals. In: Tsuchiya M (ed) Proc 4th World Congr Microcirc. Elsevier, Amsterdam (in press)

    Google Scholar 

  2. Blaustein MP (1976) Sodium-calcium exchange and the regulation of cell calcium in muscle fibers. Physiologist 19: 525–540

    PubMed  CAS  Google Scholar 

  3. Block AJ, Feinberg H, Herbaczynska-Cedro K, Vane JR (1975) Anoxia-induced release of prostaglandins in rabbit isolated hearts. Circ Res 36: 34–42

    Article  PubMed  CAS  Google Scholar 

  4. Busija DW (1984) Sympathetic nerves reduce cerebral blood flow during hypoxia in awake rabbits. Am J Physiol 247: H446–H451

    PubMed  CAS  Google Scholar 

  5. Busse R, Förstermann U, Matsuda H, Pohl U (1984) The role of prostaglandins in the endothelium-mediated vasodilatory response to hypoxia. Pflugers Arch 401: 77–83

    Article  PubMed  CAS  Google Scholar 

  6. Busse R, Pohl U, Kenner C, Klemm U (1983) Endothelial cells are involved in the vasodilatory response to hypoxia. Pflugers Arch 397: 78–80

    Article  PubMed  CAS  Google Scholar 

  7. Carrier JRO, Walker JR, Guyton AC (1964) Role of oxygen in autoregulation of blood flow in isolated vessels. Am J Physiol 206: 951–954

    PubMed  CAS  Google Scholar 

  8. Chang AE, Detar R (1980) Oxygen and vascular smooth muscle contraction revisited. Am J Physiol 238: H716–H728

    PubMed  CAS  Google Scholar 

  9. Coburn RF, Grubb B, Aronson RD (1979) Effect of cyanide on oxygen tension-dependent mechanical tension in rabbit aorta. Circ Res 44: 368–378

    Article  PubMed  CAS  Google Scholar 

  10. Detar R (1980) Mechanism of physiological hypoxia-induced depression of vascular smooth muscle contraction. Am J Physiol 238: H761–H769

    PubMed  CAS  Google Scholar 

  11. Duling BR (1974) Oxygen sensitivity of vascular smooth muscle. II. In vivo studies. Am J Physiol 227: 42–49

    PubMed  CAS  Google Scholar 

  12. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288: 373–376

    Article  PubMed  CAS  Google Scholar 

  13. Grote J, Schubert R (1982) Regulation of cerebral perfusion and PO2 in normal and edematous brain tissue. In: Loeppky JA, Riedesel ML (eds) Oxygen transport to human tissues. Elsevier/North-Holland, Amsterdam, pp 169–178

    Google Scholar 

  14. Grote J, Siegel G, Adler A, Zimmer K, Müller R (1987) The effect of hypoxia on the electromechanical properties of the canine carotid artery. In: Cervós-Navarro J, Ferszt R (eds) Stroke and microcirculation. Raven, New York, pp 51–56

    Google Scholar 

  15. Grote J, Siegel G, Zimmer K, Adler A (1987) Membranpotential und Tonus der Gefäßmuskulatur in Abhängigkeit vom O2-Partialdruck. Z Kardiol 76: 35

    Google Scholar 

  16. Hellstrand P, Johansson B, Norberg K (1977) Mechanical, electrical, and biochemical effects of hypoxia and substrate removal on spontaneously active vascular smooth muscle. Acta Physiol Scand 100: 69–83

    Article  PubMed  CAS  Google Scholar 

  17. Jackson WF, Duling BR (1983) The oxygen sensitivity of hamster cheek pouch arterioles. In vitro and in situ studies. Circ Res 53: 515–525

    Article  PubMed  CAS  Google Scholar 

  18. Johansson B, Somlyo AP (1980) Electrophysiology and excitation-contraction coupling. In: Bohr DF, Somlyo AP, Sparks JRHV (eds) Handbook of Physiology, Sect 2, The cardiovascular system, Vol II, Vascular smooth muscle. American Physiological Society, Bethesda, pp 301–323

    Google Scholar 

  19. Kontos HA, Wei EP, Raper AJ, Rosenblum WI, Navari RM, Patterson JL (1978) Role of tissue hypoxia in local regulation of cerebral microcirculation. Am J Physiol 234: H582–H591

    PubMed  CAS  Google Scholar 

  20. Litza B, Siegel G (1987) Inhibition-relaxation coupling in vascular smooth muscle. Fed Proc 46: 507

    Google Scholar 

  21. Loirand G, Pacaud P, Mironneau C, Mironneau J (1986) Evidence for two distinct calcium channels in rat vascular smooth muscle cells in short-term primary culture. Pflugers Arch 407: 566–568

    Article  PubMed  CAS  Google Scholar 

  22. McCalden TA, Nath RG, Thiele K (1983) Prostacyclin and vasodilator mechanisms in the cerebral circulation. Blood Vessels 20: 202

    Google Scholar 

  23. Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327: 524–526

    Article  PubMed  CAS  Google Scholar 

  24. Rubanyi GM, Vanhoutte PM (1985) Hypoxia releases a vasoconstrictor substance from the canine vascular endothelium. J Physiol (Lond) 364: 45–56

    CAS  Google Scholar 

  25. Rüegg JC (1986) Calcium in muscle activation. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  26. Siegel G (1986) Membranphysiologische Grundlagen der peripheren Gefäßregulation. Physiol aktuell 1:31–52

    Google Scholar 

  27. Siegel G, Ehehalt R, Koepchen HP (1978) Membrane potential and relaxation in vascular smooth muscle. In: Vanhoutte PM, Leusen I (eds) Mechanisms of vasodilatation. Karger, Basel, pp 56–72

    Google Scholar 

  28. Siegel G, Grote J (1987) Hypoxia effects hyperpolarization and relaxation in canine vascular smooth muscle. Fed Proc 46: 507

    Google Scholar 

  29. Siegel G, Grote J, Zimmer K, Adler A, Litza B (1988) Electro-physiological effects of hypoxia on vascular smooth muscle. In: Vanhoutte PM (ed) Vasodilatation. Raven, New York (in press)

    Google Scholar 

  30. Siegel G, Stock G, Schnalke F, Litza B (1987) Electrical and mechanical effects of prostacyclin in the canine carotid artery. In: Gryglewski RJ, Stock G (eds) Prostacyclin and its stable analogue iloprost. Springer, Berlin Heidelberg New York, pp 143–149

    Chapter  Google Scholar 

  31. Siegel G, Thiel M, Schnalke F, Litza B, Adler A, Stock G (1986) Prostacyclin und Vasodilatation. Klin Wochenschr 64: 1156–1157

    Google Scholar 

  32. Sylvester JT, Scharf SM, Gilbert RD, Fitzgerald RS, Traystman RJ (1979) Hypoxic and CO hypoxia in dogs: hemodynamics, carotid reflexes, and catecholamines. Am J Physiol 236: H22–H28

    PubMed  CAS  Google Scholar 

  33. Vanhoutte PM (1976) Effects of anoxia and glucose depletion on isolated veins of the dog. Am J Physiol 230: 1261–1268

    PubMed  CAS  Google Scholar 

  34. Vanhoutte PM (1987) The end of the quest? Nature 327: 459–460

    Article  PubMed  CAS  Google Scholar 

  35. Vanhoutte PM, Rubanyi GM, Miller VM, Houston DS (1986) Modulation of vascular smooth muscle contraction by the endothelium. Annu Rev Physiol 48: 307–320

    Article  PubMed  CAS  Google Scholar 

  36. Wolin MS, Rodenburg JM, Messina EJ, Kaley G (1987) Oxygen metabolites and vasodilator mechanisms in rat cremasteric arterioles. Am J Physiol 252: H1159–H1163

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Siegel, G., Grote, J. (1988). PO2-Induced Changes of Membrane Potential and Tension in Vascular Smooth Musculature. In: Acker, H. (eds) Oxygen Sensing in Tissues. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83444-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83444-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83446-2

  • Online ISBN: 978-3-642-83444-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics