PO2-Induced Changes of Membrane Potential and Tension in Vascular Smooth Musculature

  • G. Siegel
  • J. Grote

Abstract

That a decrease in oxygen tension leads to vasodilatation has been known from the literature for a long time. Mechanical measurements demonstrate that hypoxia effects relaxation of vascular strips [8, 9,10, 33], vasodilatation in perfused vessels [5, 6, 7,11], or an increase in blood flow [3, 4,13,17,19, 32]. Electrophysiological investigations during oxygen deficiency, especially intracellular measurements of the membrane potential of vascular smooth muscle cells, do not exist. It has been reported merely that a PO2 decrease in the rat portal vein restricts spontaneous spike discharges and finally causes their complete cessation [16]. Johansson and Somlyo [18] supposed that vasodilatation with hypoxia possibly has an electrophysiological correlate.

Keywords

Permeability Depression Prostaglandin Noradrenaline Cyanide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arfors K-E (1988) Free radicals. In: Tsuchiya M (ed) Proc 4th World Congr Microcirc. Elsevier, Amsterdam (in press)Google Scholar
  2. 2.
    Blaustein MP (1976) Sodium-calcium exchange and the regulation of cell calcium in muscle fibers. Physiologist 19: 525–540PubMedGoogle Scholar
  3. 3.
    Block AJ, Feinberg H, Herbaczynska-Cedro K, Vane JR (1975) Anoxia-induced release of prostaglandins in rabbit isolated hearts. Circ Res 36: 34–42PubMedCrossRefGoogle Scholar
  4. 4.
    Busija DW (1984) Sympathetic nerves reduce cerebral blood flow during hypoxia in awake rabbits. Am J Physiol 247: H446–H451PubMedGoogle Scholar
  5. 5.
    Busse R, Förstermann U, Matsuda H, Pohl U (1984) The role of prostaglandins in the endothelium-mediated vasodilatory response to hypoxia. Pflugers Arch 401: 77–83PubMedCrossRefGoogle Scholar
  6. 6.
    Busse R, Pohl U, Kenner C, Klemm U (1983) Endothelial cells are involved in the vasodilatory response to hypoxia. Pflugers Arch 397: 78–80PubMedCrossRefGoogle Scholar
  7. 7.
    Carrier JRO, Walker JR, Guyton AC (1964) Role of oxygen in autoregulation of blood flow in isolated vessels. Am J Physiol 206: 951–954PubMedGoogle Scholar
  8. 8.
    Chang AE, Detar R (1980) Oxygen and vascular smooth muscle contraction revisited. Am J Physiol 238: H716–H728PubMedGoogle Scholar
  9. 9.
    Coburn RF, Grubb B, Aronson RD (1979) Effect of cyanide on oxygen tension-dependent mechanical tension in rabbit aorta. Circ Res 44: 368–378PubMedCrossRefGoogle Scholar
  10. 10.
    Detar R (1980) Mechanism of physiological hypoxia-induced depression of vascular smooth muscle contraction. Am J Physiol 238: H761–H769PubMedGoogle Scholar
  11. 11.
    Duling BR (1974) Oxygen sensitivity of vascular smooth muscle. II. In vivo studies. Am J Physiol 227: 42–49PubMedGoogle Scholar
  12. 12.
    Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288: 373–376PubMedCrossRefGoogle Scholar
  13. 13.
    Grote J, Schubert R (1982) Regulation of cerebral perfusion and PO2 in normal and edematous brain tissue. In: Loeppky JA, Riedesel ML (eds) Oxygen transport to human tissues. Elsevier/North-Holland, Amsterdam, pp 169–178Google Scholar
  14. 14.
    Grote J, Siegel G, Adler A, Zimmer K, Müller R (1987) The effect of hypoxia on the electromechanical properties of the canine carotid artery. In: Cervós-Navarro J, Ferszt R (eds) Stroke and microcirculation. Raven, New York, pp 51–56Google Scholar
  15. 15.
    Grote J, Siegel G, Zimmer K, Adler A (1987) Membranpotential und Tonus der Gefäßmuskulatur in Abhängigkeit vom O2-Partialdruck. Z Kardiol 76: 35Google Scholar
  16. 16.
    Hellstrand P, Johansson B, Norberg K (1977) Mechanical, electrical, and biochemical effects of hypoxia and substrate removal on spontaneously active vascular smooth muscle. Acta Physiol Scand 100: 69–83PubMedCrossRefGoogle Scholar
  17. 17.
    Jackson WF, Duling BR (1983) The oxygen sensitivity of hamster cheek pouch arterioles. In vitro and in situ studies. Circ Res 53: 515–525PubMedCrossRefGoogle Scholar
  18. 18.
    Johansson B, Somlyo AP (1980) Electrophysiology and excitation-contraction coupling. In: Bohr DF, Somlyo AP, Sparks JRHV (eds) Handbook of Physiology, Sect 2, The cardiovascular system, Vol II, Vascular smooth muscle. American Physiological Society, Bethesda, pp 301–323Google Scholar
  19. 19.
    Kontos HA, Wei EP, Raper AJ, Rosenblum WI, Navari RM, Patterson JL (1978) Role of tissue hypoxia in local regulation of cerebral microcirculation. Am J Physiol 234: H582–H591PubMedGoogle Scholar
  20. 20.
    Litza B, Siegel G (1987) Inhibition-relaxation coupling in vascular smooth muscle. Fed Proc 46: 507Google Scholar
  21. 21.
    Loirand G, Pacaud P, Mironneau C, Mironneau J (1986) Evidence for two distinct calcium channels in rat vascular smooth muscle cells in short-term primary culture. Pflugers Arch 407: 566–568PubMedCrossRefGoogle Scholar
  22. 22.
    McCalden TA, Nath RG, Thiele K (1983) Prostacyclin and vasodilator mechanisms in the cerebral circulation. Blood Vessels 20: 202Google Scholar
  23. 23.
    Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327: 524–526PubMedCrossRefGoogle Scholar
  24. 24.
    Rubanyi GM, Vanhoutte PM (1985) Hypoxia releases a vasoconstrictor substance from the canine vascular endothelium. J Physiol (Lond) 364: 45–56Google Scholar
  25. 25.
    Rüegg JC (1986) Calcium in muscle activation. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  26. 26.
    Siegel G (1986) Membranphysiologische Grundlagen der peripheren Gefäßregulation. Physiol aktuell 1:31–52Google Scholar
  27. 27.
    Siegel G, Ehehalt R, Koepchen HP (1978) Membrane potential and relaxation in vascular smooth muscle. In: Vanhoutte PM, Leusen I (eds) Mechanisms of vasodilatation. Karger, Basel, pp 56–72Google Scholar
  28. 28.
    Siegel G, Grote J (1987) Hypoxia effects hyperpolarization and relaxation in canine vascular smooth muscle. Fed Proc 46: 507Google Scholar
  29. 29.
    Siegel G, Grote J, Zimmer K, Adler A, Litza B (1988) Electro-physiological effects of hypoxia on vascular smooth muscle. In: Vanhoutte PM (ed) Vasodilatation. Raven, New York (in press)Google Scholar
  30. 30.
    Siegel G, Stock G, Schnalke F, Litza B (1987) Electrical and mechanical effects of prostacyclin in the canine carotid artery. In: Gryglewski RJ, Stock G (eds) Prostacyclin and its stable analogue iloprost. Springer, Berlin Heidelberg New York, pp 143–149CrossRefGoogle Scholar
  31. 31.
    Siegel G, Thiel M, Schnalke F, Litza B, Adler A, Stock G (1986) Prostacyclin und Vasodilatation. Klin Wochenschr 64: 1156–1157Google Scholar
  32. 32.
    Sylvester JT, Scharf SM, Gilbert RD, Fitzgerald RS, Traystman RJ (1979) Hypoxic and CO hypoxia in dogs: hemodynamics, carotid reflexes, and catecholamines. Am J Physiol 236: H22–H28PubMedGoogle Scholar
  33. 33.
    Vanhoutte PM (1976) Effects of anoxia and glucose depletion on isolated veins of the dog. Am J Physiol 230: 1261–1268PubMedGoogle Scholar
  34. 34.
    Vanhoutte PM (1987) The end of the quest? Nature 327: 459–460PubMedCrossRefGoogle Scholar
  35. 35.
    Vanhoutte PM, Rubanyi GM, Miller VM, Houston DS (1986) Modulation of vascular smooth muscle contraction by the endothelium. Annu Rev Physiol 48: 307–320PubMedCrossRefGoogle Scholar
  36. 36.
    Wolin MS, Rodenburg JM, Messina EJ, Kaley G (1987) Oxygen metabolites and vasodilator mechanisms in rat cremasteric arterioles. Am J Physiol 252: H1159–H1163PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • G. Siegel
    • 1
  • J. Grote
    • 2
  1. 1.Institute of Physiology, Biophysical Research GroupFree University of BerlinBerlin 33Germany
  2. 2.Institute of PhysiologyUniversity of BonnBonn 1Germany

Personalised recommendations