Skip to main content

Effect of Oxygen Partial Pressure on Formation of the Bacterial Photosynthetic Apparatus

  • Chapter
Book cover Oxygen Sensing in Tissues

Abstract

Most living chemotrophic organisms generate free energy in the form of ATP by oxidative phosphorylation. This oxygen-consuming process is localized on mitochondrial or bacterial membranes and leads to a membrane potential and a proton gradient over the membrane (proton motive force), which drives ATP synthesis at proton (H+) ATPase. Oxygen is produced by plant-type photosynthesis during the day when water is split by photosystem II into reducing equivalents for CO2 fixation and oxygen in a light-energy dependent process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armitage JP, Ingham C, Evans MCW (1985) Role of proton motive force in phototactic and aerotactic responses of R. sphaeroides. J Bacteriol 161: 967–972

    PubMed  CAS  Google Scholar 

  • Bachofen R, Wiemken V (1986) Topology of the chromatophore membranes of purple bacteria. In: Pirson A, Zimmermann MH (eds) Photosynthesis III. Encyclopedia of plant physiology. Springer, Berlin Heidelberg New York, pp 620–631

    Google Scholar 

  • Beatty JT, Adams CW, Cohen SN (1986) Regulation of expression of the rxcA operon of Rhodopseudomas capsulata. In: Youvan DC, Daldal F (eds) Current communications in molecular biology: microbial energy transduction. Cold Spring Harbor Laboratory, pp 27-29

    Google Scholar 

  • Biedermann M, Drews G, Marx R, Schröder J (1967) Der Einfluß des Sauerstoffpartialdruckes und der Antibiotica Actinomycin und Puromycin auf das Wachstum, die Synthese von Bacteriochlorophyll und die Thylakoidmorphogenese in Dunkelkulturen von Rhodospirillum rubrum. Arch Mikrobiol 56:133–147

    Article  PubMed  CAS  Google Scholar 

  • Biel AJ, Marrs BL (1983) Transcriptional regulation of several genes for bacteriochlorophyll biosynthesis in Rhodopseudonomas capsulata in response to oxygen. J Bacteriol 156: 686–694

    PubMed  CAS  Google Scholar 

  • Blankenship RE, Fuller RC (1986) Membrane topology and photochemistry of the green photosynthetic bacterium Chloroflexus aurantiacus. In: Pirson A, Zimmermann MH (eds) Photosynthesis III. Encyclopedia of plant physiology vol 19. Springer, Berlin Heidelberg New York, pp 390–399

    Google Scholar 

  • Clark WG, Davidson E, Marrs BL (1984) Variation of levels of mRNA coding for antenna and reaction center polypeptides in Rhodopseudonomas capsulata in response to changes in oxygen concentration. J Bacteriol 157: 945–948

    PubMed  CAS  Google Scholar 

  • Clement-Metral JD (1986) Regulation of Ala-synthetase by O2 and thioredoxin system. In: Holmgren A, Bränden C-I, Jörnvall H, Sjöberg B-M (eds) Thioredoxin and glutaredoxin system structure and function. Raven, New York, pp 275–284

    Google Scholar 

  • Clement-Metral JD, Höög J-O, Holmgren A (1986) Characterization of the thioredoxin system in the facultative phototroph Rhodobacter sphaeroides Y. Eur J Biochem 161:119–126

    Article  PubMed  CAS  Google Scholar 

  • Cohen-Bazire G, Sistrom WR, Stanier RY (1957) Kinetic studies of pigment synthesis by non sulfur purple bacteria. J Cell Comp Physiol 49: 25–35

    Article  CAS  Google Scholar 

  • Dierstein R, Drews G (1974) Nitrogen-limited continuous culture of Rhodopseudonomas capsulatus growing photosynthetically or heterotrophically under low oxygen tensions. Arch Microbiol 99:117–128

    Article  PubMed  CAS  Google Scholar 

  • Donohue TJ, Kaplan S (1986) Synthesis and assembly of bacterial photosynthetic membrane. In: Pirson A, Zimmermann MH (eds) Photosynthesis III. Encyclopedia of plant physiology, vol 19. Springer, Berlin Heidelberg New York, pp 632–639

    Google Scholar 

  • Drews G (1985) Structure and functional organization of light-harvesting complexes and photochemical reaction centers in membranes of phototrophic bacteria. Microbiol Rev 49: 59–70

    PubMed  CAS  Google Scholar 

  • Drews G, Giesbrecht P (1963) Zur Morphogenese der Bakterien-Chromatophoren und zur Synthese des Bacteriochlorophylls bei Rhodopseudomonas sphaeroides und Rhodospirillum rubrum. Zentralbl Bakteriol Parasit Infekt Hyg 190: 508–536

    CAS  Google Scholar 

  • Drews G, Oelze J (1981) Organization and differentiation of membranes of phototrophic bacteria. Adv Microb Physiol 22:1–92

    Article  PubMed  CAS  Google Scholar 

  • Dutton PL (1986) Energy transduction in anoxygenic photosynthesis. In: Staehelin LA, Arntzen CJ (eds) Encyclopedia of plant physiology. Photosynthesis III, vol 19. Springer, Heidelberg Berlin New York, pp 197–237

    Google Scholar 

  • Gest H (1972) Energy conservation and generation of reducing power in bacterial photosynthesis. Adv Microb Physiol 7: 243–282

    Article  CAS  Google Scholar 

  • Grether-Beck S, Oelze J (1987) The development of the photosynthetic apparatus and energy transduction in malate-limited phototrophic cultures of Rhodobacter capsulatus. Arch Microbiol 149: 70–75

    Article  CAS  Google Scholar 

  • Hüdig H, Kaufmann N, Drews G (1986) Respiratory deficient mutants of Rhodopseudomonas capsulata. Arch Microbiol 145: 378–385

    Article  Google Scholar 

  • Inamine GS, van Houten J, Niederman RA (1984) Intracellular localization of photosynthetic membrane growth initiation sites in Rhodopseudomonas sphaeroidix. J Bacteriol 158: 425–429

    PubMed  CAS  Google Scholar 

  • Kaufmann N, Reidl H-H, Golecki JR, Garcia AF, Drews G (1982) Differentiation of the membrane system in cells of Rhodopseudomonas capsulata after transition from the chemotrophic to phototrophic growth conditions. Arch Microbiol 131: 313–322

    Article  CAS  Google Scholar 

  • Klug G, Kaufmann N, Drews G (1984) The expression of genes encoding proteins of B800-850 antenna pigment complex and ribosomal RNA of Rhodopseudomonas capsulata. FEBS Lett 177:61–65

    Article  CAS  Google Scholar 

  • Klug G, Kaufmann N, Drews G (1985) Gene expression of pigment binding proteins of the bacterial photosynthetic apparatus: transcription and assembly in the membrane of Rhodopseudomonas capsulata. Proc Natl Acad Sci USA 82: 6485–6489

    Article  PubMed  CAS  Google Scholar 

  • Klug G, Liebetanz R, Drews G (1986) The influence of bacteriochlorophyll biosynthesis on formation of pigment-binding proteins and assembly of pigment protein complexes in Rhodopseudomonas capsulata. Arch Microbiol 146: 284–291

    Article  CAS  Google Scholar 

  • Kranz RG, Haselkorn R (1986) Anaerobic regulation of nitrogen-fixation genes in Rhodopseudomonas capsulata. Proc Natl Acad Sci USA 83: 6805–6809

    Article  PubMed  CAS  Google Scholar 

  • Lascelles J (1968) The bacterial photosynthetic apparatus. Adv Microb Physiol 2:1–42

    Article  CAS  Google Scholar 

  • Marrs BL, Gest H (1973) Regulation of bacteriochlorophyll synthesis by oxygen in respiratory mutants of Rhodopseudomonas capsulata. J Bacteriol 114:1052–1057

    PubMed  CAS  Google Scholar 

  • Oelze J, Drews G (1981) Membranes of phototrophic bacteria. In: Ghosh BK (ed) Organization of prokaryotic cell membranes, vol II. CRC, Boca Raton, pp 131–195

    Google Scholar 

  • Ordal GW (1985) Bacterial chemotaxis: biochemistry of behavior in a single cell. CRC Crit Rev Microbiol 12: 95–130

    Article  CAS  Google Scholar 

  • Schön G, Drews G (1968) Der Redoxzustand des NAD(P) und der Cytochrome b und c2 in Abhängigkeit vom pO2 bei einigen Athiorhodaceae. Arch Mikrobiol 62: 317–326

    Article  Google Scholar 

  • Schumacher A, Drews G (1978) The formation of bacteriochlorophyll-protein complexes of the photosynthetic apparatur of Rhodopseudomonas capsulatus during early stages of development. Biochim Biophys Acta 501:183–194

    Article  PubMed  CAS  Google Scholar 

  • Shaw DJ, Rice D, Guest JR (1983) Homology between CAP and fnr, a regulator of anaerobic respiration in E. coli. J Mol Biol 166: 241–247

    Article  PubMed  CAS  Google Scholar 

  • Sistrom WR (1965) Effect of oxygen on growth and the synthesis of bacteriochlorophyll in Rhodospirillum molischianum. J Bacteriol 89: 403–408

    PubMed  CAS  Google Scholar 

  • Sprague SG, Varga AR (1986) Membrane architecture of anoxygenic photosynthetic bacteria. In: Pirson A, Zimmermann MH (eds) Photosynthesis III. Encyclopedia of plant physiology, vol 19. Springer, Berlin Heidelberg New York, pp 603–619

    Google Scholar 

  • Viale AA, Wider EA, del C Batlle AM (1987) Porphyrin biosynthesis in Rhodopseudomonas palus-tris-XII-aminolevulinate synthetase switch-off/on regulation. Int J Biochem 19: 379–383

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto N, Droffner ML (1985) Mechanisms determining aerobic or anaerobic growth in the facultative anaerobe Salmonella typhimurium. Proc Natl Acad Sci USA 82: 2077–2081

    Article  PubMed  CAS  Google Scholar 

  • Zhu YS, Kaplan S (1985) Effects of light, oxygen and substrates on steady-state levels of mRNA coding for ribulose-l,5-biophosphate carboxylase and light-harvesting and reaction center polypeptides in Rhodopseudomonas sphaeroides. J Bacteriol 162: 925–932

    PubMed  CAS  Google Scholar 

  • Zhu YS, Hearst JE (1986) Regulation of expression of genes for light-harvesting antenna proteins LH-I and LH-II; reaction center polypeptides RC-L, RC-M, and RC-H; and enzymes of bacteriochlorophyll and carotenoid biosynthesis in Rhodobacter capsulatus by light and oxygen. Proc Natl Acad Sci USA 83: 7613–7617

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Drews, G. (1988). Effect of Oxygen Partial Pressure on Formation of the Bacterial Photosynthetic Apparatus. In: Acker, H. (eds) Oxygen Sensing in Tissues. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83444-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83444-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83446-2

  • Online ISBN: 978-3-642-83444-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics