Theory of Temperature Dependence of Elementary Excitation Energy

  • S. Sasaki
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 79)

Abstract

Assuming that the total Hamiltonian of liquid helium is completely diagonalized by a unitary operator, we can introduce “dressed-boson” operators as the unitary transformation of creation and annihilation operators of a helium atom. Then we can make a new viewpoint for the elementary excitation of liquid helium on the basis of the concept of the “dressed-boson”. The temperature dependence of the elementary excitation energy is studied. It is verified that the elementary excitation with a small momentum softens as the temperature approaches λ-point. The detection of the softening is proposed.

Keywords

Helium Equa Tion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.D. Landau: J. Phys. USSR 5, 71 (1941)Google Scholar
  2. 2.
    R.P. Feynman: Phys. Rev. 94, 262 (1954)CrossRefMATHADSGoogle Scholar
  3. 3.
    A.D.B. Woods and R.A. Cowley: Rep. Prog. Phys. 36, 1135 (1973)CrossRefADSGoogle Scholar
  4. 4.
    H.W. Jackson: Phys. Rev. B19, 2556 (1979)CrossRefADSGoogle Scholar
  5. 5.
    E.C. Svensson, V.F. Sears and A. Griffin: Phys. Rev. B23, 4493 (1981)CrossRefADSGoogle Scholar
  6. 6.
    S. Sasaki: Sci. Rep., Col. Gen. Educ. Osaka Univ. 35–2, 1 (1986)Google Scholar
  7. S. Sasaki: JJAP Supplement, Proceedings of LT-18, 26–3, 23 (1987)Google Scholar
  8. 7.
    S. Sasaki: in preparationGoogle Scholar
  9. 8.
    G. Winterling, F.S. Holmes and T.J. Greytack: Phys. Rev. Lett. 30, 427 (1973)CrossRefADSGoogle Scholar
  10. G. Winterling, J. Miller and T.J. Greytak: Phys. Lett. 48A, 343 (1974)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1989

Authors and Affiliations

  • S. Sasaki
    • 1
  1. 1.Department of Physics, College of General EducationOsaka UniversityToyonaka, Osaka 560Japan

Personalised recommendations