Theory of Temperature Dependence of Elementary Excitation Energy

  • S. Sasaki
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 79)


Assuming that the total Hamiltonian of liquid helium is completely diagonalized by a unitary operator, we can introduce “dressed-boson” operators as the unitary transformation of creation and annihilation operators of a helium atom. Then we can make a new viewpoint for the elementary excitation of liquid helium on the basis of the concept of the “dressed-boson”. The temperature dependence of the elementary excitation energy is studied. It is verified that the elementary excitation with a small momentum softens as the temperature approaches λ-point. The detection of the softening is proposed.


Helium Equa Tion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L.D. Landau: J. Phys. USSR 5, 71 (1941)Google Scholar
  2. 2.
    R.P. Feynman: Phys. Rev. 94, 262 (1954)CrossRefMATHADSGoogle Scholar
  3. 3.
    A.D.B. Woods and R.A. Cowley: Rep. Prog. Phys. 36, 1135 (1973)CrossRefADSGoogle Scholar
  4. 4.
    H.W. Jackson: Phys. Rev. B19, 2556 (1979)CrossRefADSGoogle Scholar
  5. 5.
    E.C. Svensson, V.F. Sears and A. Griffin: Phys. Rev. B23, 4493 (1981)CrossRefADSGoogle Scholar
  6. 6.
    S. Sasaki: Sci. Rep., Col. Gen. Educ. Osaka Univ. 35–2, 1 (1986)Google Scholar
  7. S. Sasaki: JJAP Supplement, Proceedings of LT-18, 26–3, 23 (1987)Google Scholar
  8. 7.
    S. Sasaki: in preparationGoogle Scholar
  9. 8.
    G. Winterling, F.S. Holmes and T.J. Greytack: Phys. Rev. Lett. 30, 427 (1973)CrossRefADSGoogle Scholar
  10. G. Winterling, J. Miller and T.J. Greytak: Phys. Lett. 48A, 343 (1974)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1989

Authors and Affiliations

  • S. Sasaki
    • 1
  1. 1.Department of Physics, College of General EducationOsaka UniversityToyonaka, Osaka 560Japan

Personalised recommendations