Skip to main content

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

The irradiation of tissues with therapeutic doses of x-rays can result in the occurrence of acute, early, and/or late effects. This was initially recognized before the turn of this century. While the acute and early effects of radiation manifest themselves mainly as reactions of the skin, and could be evaluated by visual inspection, the study of the origin of the late effects was, in early times, only possible through histological observations. Surprisingly, since the early observations by Gassmann (1899), Mühsam (1904), and Wolbach (1909) that the blood vessels in irradiated tissues show specific changes, a general consensus seems to have developed among radiation pathologists that blood vessels are sensitive to radiation. Later a hypothesis was proposed that blood vessels were the most likely candidate for dose-limiting late normal responses (Rubin and Casarett 1968).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aarnoudse MW (1979) Vessel wall damage by x-rays and 15 MeV neutrons. An experimental study. Groningen University, The Netherlands

    Google Scholar 

  • Adamson IYR and Bowden DH (1983) Endothelial injury and repair in radiation-induced pulmonary fibrosis. Am. J. Pathol. 112: 224–230

    PubMed  CAS  Google Scholar 

  • Allen JB, Sagerman RH and Stuart MJ (1981) Irradiation decreases vascular prostacyclin formation with no concomitant effect on platelet thromboxane production. The Lancet 1193–1196

    Google Scholar 

  • Altman KI, Gerber GB (1983) The effect of ionizing radiations on connective tissue. Adv Radiat Biol 10: 237–304

    CAS  Google Scholar 

  • Archambeau JO, Ines A, Fajardo LF (1984) Response of swine skin microvasculature to acute single exposures of x-rays: quantification of endothelial changes. Radiat Res 98: 37–51

    PubMed  CAS  Google Scholar 

  • Archambeau JO, Ines A, Fajardo LF, (1985) Correlation of the dermal microvasculature morphology with the epidermal and the endothelial population changes produced by single x-ray fractions of 1649, 2231 and 2619 rad in swine. Int J Radiat Oncol Biol Phys 11: 1639–1646

    PubMed  CAS  Google Scholar 

  • Begg AC, Terry NHA (1984) The sensitivity of normal stroma to fractionated radiotherapy measured by a tumour growth rate assay. Radiother Oncol 2: 333–341

    PubMed  CAS  Google Scholar 

  • Berthrong M, Fajardo LF (1981) Radiation injury in surgical pathology. Part II. Alimentary tract. Am J Surg Pathol 5: 153–178

    PubMed  CAS  Google Scholar 

  • Bond VP, Fliedner TM, Usenik E, Upton LI, (1962) Early bone marrow hemorrhage in the irradiated dog. Arch Pathol 73: 13–29

    PubMed  CAS  Google Scholar 

  • Brown DG, Sasmore DP, Jones LP, (1962) Acute central nervous system syndrome of burros. In: Haley, TJ, Snyder RS (eds) Response of the nervous system to ionizing radiation. Academic, New York, pp 503–511

    Google Scholar 

  • Brown JM, Fajardo LF, Stewart JR (1973) Mural thrombosis of the heart induced by radiation. Arch Pathol 96: 1–4

    PubMed  CAS  Google Scholar 

  • Calvo W, Hopewell JW, Reinhold HS, Yeung TK, (1986) Radiation induced damage in the choroid plexus of the rat brain: a histological evaluation. Neuropathol Appl Neurobiol 12: 47–61

    PubMed  CAS  Google Scholar 

  • Calvo W, Hopewell JW, Reinhold HS, Van den Berg AP, Yeung TK (1987) Dose-dependent and time-dependent changes in the choroid plexus of the irradiated rat brain. Br J Radiol 60: 1109–1117

    PubMed  CAS  Google Scholar 

  • Camplejohn RS, Penhaligon M (1985) The tumour bed effect: a cell kinetic and histological investigation of tumours growing in irradiated mouse skin. Br J Radiol 58: 443–451

    PubMed  CAS  Google Scholar 

  • Caveness WF (1980) Experimental observations: delayed necrosis in normal monkey brain. In: Gilbert HA, Kagan AR (eds) Radiation damage to the nervous system: a delayed therapeutic hazard. Raven, New York, pp 1–38

    Google Scholar 

  • Caveness WF, Tanaka A, Hess KH, Kemper TL, Tso MOM, Zimmerman LE (1974) Delayed brain swelling and functional derangement after x-irradiation of the right visual cortex in the Macaca mulatta. Radiat Res 57: 104–120

    PubMed  CAS  Google Scholar 

  • Chapman PH, Young RJ (1968) Effect of cobalt-60 gamma irradiation on blood pressure and cerebral blood flow in the Macaca mulatta. Radiat Res 35: 75–85

    Google Scholar 

  • Clemente CD, Holst EA (1954) Pathological changes in neurons, neurologia and blood-brain barrier induced by x-irradiation of heads of monkeys. Arch Neurol Psychiatry 71: 66–79

    CAS  Google Scholar 

  • Cottier H (1961) Strahlenbedingte Lebens Verkürzung. Springer Berlin Heidelberg New York

    Google Scholar 

  • Dailey MO, Coleman CN, Fajardo LF (1981) Splenic injury caused by therapeutic irradiation. Am J Surg Pathol 5: 325–331

    PubMed  CAS  Google Scholar 

  • DeGowin RL, Lewis LJ, Mason RE, Borke MK, Hoak JC (1976) Radiation-induced inhibition of human endothelial cells replicating in culture. Radiat Res 68: 244–250

    PubMed  CAS  Google Scholar 

  • de Ruiter J, van Putten LM (1975) Measurement of blood flow in the mouse tail after irradiation. Radiat Res 61: 427–438

    PubMed  Google Scholar 

  • Dimitrievich GS, Fischer-Dzoga K (1983) Effects of x-ray dose fractionation on the microvasculature in vivo. In: Broerse JJ, Barendsen GW, Kal HB, van de Kogel AJ (eds) Radiation research. Proceedings of the 7th International Congress of Radiation Research. Martinus Nijhoff, Publ. The Hague

    Google Scholar 

  • Dimitrievich GS, Hausladen SL, Kuchnir FT, Griem ML (1977) Radiation damage and subendothelial repair to rabbit ear chamber micro vasculature. Radiat Res 69: 276–292

    PubMed  CAS  Google Scholar 

  • Dimitrievich GS, Fischer-Dzoga K, Griem ML (1984) Radiosensitivity of vascular tissue. I. Differential radiosensitivity of capillaries: a quantitative in vivo study. Radiat Res 99: 511–535

    PubMed  CAS  Google Scholar 

  • Dunjic A (1974a) The influence of radiation on blood vessels and circulation. Blood flow and permeability in liver, kidney and lung. Curr Top Radiat Res Q 10: 109–134

    PubMed  CAS  Google Scholar 

  • Dunjic A (1974b) The influence of radiation on blood vessels and circulation. Blood flow and permeability in irradiated skin. Curr Top Radiat Res Q 10: 151–169

    PubMed  CAS  Google Scholar 

  • Eassa E -HM, Casarett GW, (1973) Effect of e-amino-n- caproic acid (EACA) on radiation-induced increase in capillary permeability. Radiology 106: 679–688

    PubMed  CAS  Google Scholar 

  • El-Naggar AM El-Baz LM, Carsten AL, Chanana AJ, Cronkite EP (1978) Radiation-induced damage to blood vessels: a study of dose-effect relationship with time after x-irradiation. Int J Radiat Biol 34: 359–366

    CAS  Google Scholar 

  • Evans ML, Graham MM, Mahler PA, Rasey JS (1986) Changes in vascular permeability following thorax irradiation in the rat. Radiat Res 107: 262–271

    PubMed  CAS  Google Scholar 

  • Fajardo LF (1982) Pathology of radiation injury. Masson, New York

    Google Scholar 

  • Fajardo LF, Berthrong M (1978) Radiation injury in surgical pathology. Part I. Am J Surg Pathol 2: 159–199

    PubMed  CAS  Google Scholar 

  • Fajardo LF, Berthrong M (1988) Vascular lesions following radiation. Pathol Annu 23: 297–330

    PubMed  Google Scholar 

  • Fajardo LF, Colby TV (1980) Pathogenesis of veno- occlusive liver disease after radiation. Arch Pathol Lab Med 104: 584–588

    PubMed  CAS  Google Scholar 

  • Fajardo LF, Stewart JR (1971) Capillary injury preceding radiation-induced myocardial fibrosis. Radiology 101: 429–433

    PubMed  CAS  Google Scholar 

  • Fajardo LF, Stewart JR (1973) Pathogenesis of radiation- induced myocardial fibrosis. Lab Invest 29: 244–257

    PubMed  CAS  Google Scholar 

  • Fajardo LF, Stewart JR, Cohn KE (1968) Morphology of radiation-induced heart disease. Arch Pathol 86: 512–519

    PubMed  CAS  Google Scholar 

  • Fajardo LF, Brown JM, Glatstein E (1976) Glomerular and juxtaglomerular lesions in radiation nephropathy. Radiat Res 68: 177–183

    PubMed  CAS  Google Scholar 

  • Fee WE, Goffinet DR, Fajardo LF, Guthaner D, Handen C (1987) Safety of 125iodine and 192iridium implants to the canine carotid artery. Acta Otolaryngol (Stockh) 103: 514–518

    Google Scholar 

  • Field SB, Hornsey S, Kutsutani Y (1976) Effects of fractionated irradiation on mouse lung and a phenomenon of slow repair. Br J Radiol 49: 700–707

    PubMed  CAS  Google Scholar 

  • Fike JR, Gillette EL (1978) 60Co gamma and negative Pi meson irradiation of micro vasculature. Int J Radiat Oncol Biol Phys 4: 825–828

    PubMed  CAS  Google Scholar 

  • Fike JR, Gillette EL, Clow DJ (1979) Repair of sublethal radiation damage by capillaries. Int J Radiat Oncol Biol Phys 5: 339–342

    PubMed  CAS  Google Scholar 

  • Fischer JJ (1982) Proliferation of rat aortic endothelial cells following x-irradiation. Radiat Res 92: 405–410

    PubMed  CAS  Google Scholar 

  • Fischer-Dzoga K, Dimitrievich GS, Griem ML (1984) Radiosensitivity of vascular tissue. II. Differential radiosensitivity of aortic cells in vitro. Radiat Res 99: 536–546

    PubMed  CAS  Google Scholar 

  • Fliedner TM, Sandkühler S, Stodtmeister R (1955) Die Knochenmarkstruktur bei Ratten nach Bestrahlung mit schnellen Elektronen. Z Zellfors 43: 195–205

    CAS  Google Scholar 

  • Friedman M, Ryan US, Davenport WC, Chaney EL, strickland EL, Kwock L (1986) Reversible alterations in cultured pulmonary artery endothelial cell monolayer morphology and albumin permeability induced by ionizing radiation. J Cell Physiol 129: 237–249

    PubMed  CAS  Google Scholar 

  • Gassmann A (1899) Zur Histologie der Roentgenulcera. Fortschr Roentgenstr 2: 199–207

    Google Scholar 

  • Gerber GB (1979) The role of connective tissue in late effects of radiation. In: Okada S, Imamura M, Terashima T, Yamaguchi H (eds) Radiation research. Proceedings of the 6th International Congress of Radiation Research, JARR (Japanese Association for Radiation Research). Tokyo, pp 669–705

    Google Scholar 

  • Gerber GB, Dancewicx AM, Bessemans B, Casale G (1977) Biochemistry of late effects in rat lung after hemithoracic irradiation. Acta Radioy Ther Phys Biol 16: 447–455

    CAS  Google Scholar 

  • Gillette EL, Maurer GD, Severin GA (1975) Endothelial repair of radiation damage following beta irradiation. Radiology 116: 175–177

    PubMed  CAS  Google Scholar 

  • Gillette EL, Hoopes PJ, Withrow SJ (1983) Aortic changes following intraoperative electron or fractionated x- irradiation. D3-15. In: Broerse JJ, Barendsen GW, Kal HB, van de Kogel AJ (eds) Radiation research. Proceedings of the 7th International Congress of Radiation Research. Martinus Nijhoff, The Hague

    Google Scholar 

  • Glatstein E (1973) Alteration in rubidium-86 extraction in normal mouse tissues after irradiation. An estimate of long-term blood flow changes in kidneys, lung, liver, skin and muscle. Radiat Res 53: 88–101

    PubMed  CAS  Google Scholar 

  • Gold H (1961) Production of arteriosclerosis in the rat. Arch Pathol 71: 268–273

    PubMed  CAS  Google Scholar 

  • Gup AK, Schlegel JU, Caldwell I, Schlosser J (1962) Effects of irradiation on renal function. J Urol 97: 36–39

    Google Scholar 

  • Hayashi S, Suit HD (1971) Effect of fractionation of radiation dose on callus formation at site of fracture. Radiology 101: 181–186

    PubMed  CAS  Google Scholar 

  • Hei TK, Marchese MJ, Hall EJ (1987) Radiosensitivity and sublethal damage repair in human umbilical cord vein endothelial cells. Int J Radiat Oncol Biol Phys 13: 879–884

    PubMed  CAS  Google Scholar 

  • Henderson BW, Bicher HI, Johnson RJ (1983) Loss of vascular fibrinolytic activity following irradiation of the liver. An aspect of late radiation damage. Radiat Res 95: 646–652

    PubMed  CAS  Google Scholar 

  • Hendry JH (1987) Lack of differential sparing of late ischaemic atrophy and early epidermal healing after dose-fractionating of mouse tails down to 2.2 Gy per fraction. Radiat Ther Oncol 8: 153–160

    CAS  Google Scholar 

  • Hewitt HB, Blake ER (1968) The growth of transplanted murine tumours in pre-irradiated sites. Br J Cancer 12: 808–824

    Google Scholar 

  • Hirst DG, Denekamp J, Travis EL (1979) The response of mesenteric blood vessels to irradiation. Radiat Res 77: 259–275

    PubMed  CAS  Google Scholar 

  • Hirst DG, Denekamp J, Hobson B (1980) Proliferation studies of the endothelial and smooth muscle cells of the mouse mesentery after irradiation. Cell Tissue Kinet 13: 91–104

    PubMed  CAS  Google Scholar 

  • Hobson B, Denekamp J (1984) Endothelial proliferation in tumours and normal tissues: continuous labelling studies. Br J Cancer 49: 405–413

    PubMed  CAS  Google Scholar 

  • Hopewell JW (1974) The late vascular effects of radiation. Br. J Radiol 47: 157–158

    PubMed  CAS  Google Scholar 

  • Hopewell JW (1979) Late radiation damage to the central nervous system: a radiobiological interpretation. Neuro- pathol Appl Neurobiol 5: 329–343

    CAS  Google Scholar 

  • Hopewell JW (1980) The importance of vascular damage in the development of late radiation effects in normal tissues. In: Meyn RE, Withers HR (eds) Radiation biology in cancer research. Raven, New York, pp 449–459

    Google Scholar 

  • Hopewell JW (1983) Radiation effects on vascular tissue. In: Potten CS, Hendry JH (eds) Cytotoxic insult to tissue. Churchill Livingstone, Edinburgh, pp 228–257

    Google Scholar 

  • Hopewell JW (1986) Mechanisms of the action of radiation on skin and underlying tissues. In: Radiation damage to skin. Br J Radiol [Suppl] 19: 39–47

    CAS  Google Scholar 

  • Hopewell JW (1987) The role of the vasculature in normal tissue responses. In: Fielden EM, Fowler JF, Hendry JH, Scott D (eds) Proceedings of the 8th International Congress of Radiation Research. Taylor and Francis, London, pp 789–794

    Google Scholar 

  • Hopewell JW, Patterson TJS (1972) The effect of previous x-irradiation on the revascularization of free skin grafts in the pig (abstr). Biorheology 9: 45

    Google Scholar 

  • Hopewell JW, Foster JL, Gunn Y (1978) Role of vascular damage in the development of late radiation effects in the skin. In: Late biological effects of ionizing radiation. IAEA, Vienna 1: 483–492

    Google Scholar 

  • Hopewell JW, Campling D, Calvo W, Reinhold HS, Wilkinson JH, Yeung TK (1986) Vascular irradiation damage: its cellular basis and likely consequences. Br J Cancer 53 [Suppl VII]: 181–191

    Google Scholar 

  • Hopewell JW, Calvo W, Reinhold HS (1989) Radiation effects on blood vessels: role in normal tissue damage In: Steel GG, Adams GE and Horwich A (eds) The biological basis of radiotherapy. 2nd Edition Eds. Elsevier (Amsterdam) pp 101–113

    Google Scholar 

  • Johnson LK, Longenecker JP, Fajardo LF (1982) Differential radiation response of cultured endothelial cells and smooth myocytes. Anal Quant Cytol 4: 188–198

    PubMed  CAS  Google Scholar 

  • Jolles B, Harrison RG (1966) Enzymic processes and vascular changes in the skin radiation reaction. Br J Radiol 39: 12–18

    PubMed  CAS  Google Scholar 

  • Jolles B, Harrison RG (1967) Enzymic processes in vascular permeability and fragility changes in the skin radiation reaction. Bibl Anat 9: 482–487

    PubMed  CAS  Google Scholar 

  • Jovanovic D (1974) The influence of radiation on blood vessels and circulation. Lymphatics. Curr Top Radiat Res Q 10: 85–97

    CAS  Google Scholar 

  • Keyeux A (1974a) The influence of radiation on blood vessels and circulation: functional response of heart and major vessels. Curr Top Radiat Res Q 10: 98–108

    PubMed  CAS  Google Scholar 

  • Keyeux A (1974b) The influence of radiation on blood vessels and circulation. Blood flow and permeability in the central nervous system. Curr Top Radiat Res Q 10: 135–150

    PubMed  CAS  Google Scholar 

  • Keyeux A, Ochrymowicz-Bemelmans D (1978) Late response of the cerebral circulation to x-irradiation of the brain in the rat. In: Late biological effects of ionizing radiation. IAEA, Vienna 2: 251–260

    Google Scholar 

  • Keyeux A, Dunjic A, Royer E, Jovanovic D, van de Merckt J (1971) Late functional and circulatory changes in rats after local irradiation. Int J Radiat Biol 20: 7–25

    CAS  Google Scholar 

  • Keyeux A, Reinhold HS, Hopewell JH, Gerber GB, Reyners H, Calvo W (1983) Sequence of events in the development of late irradiation changes in the rat brain. Nr. C2–08. In: Broerse JJ, Barendsen GW, Kal HB, van der Kogel AJ Radiation research. Proceedings of the 7th International Congress of Radiation Research. Martinus Nijhoff, The Hague

    Google Scholar 

  • Keyeux A, Ochrymowicz-Bemelmans D, Charlier AA (1987) Early and late effect on the blood-brain barrier permeability and the antipyrine distribution volumes in the irradiated rat brain. Radiation research. In: Fielden EM, Fowler JF, Hendry JH, Scott D (eds) Proceedings of the 8th International Congress on Radiation Research, vol. 1. Taylor and Francis, London, E22–7p

    Google Scholar 

  • Kinzie J, Studer RK, Perez B, Potchen EJ (1972) Noncyto- kinetic radiation injury: anticoagulants as radioprotective agents in experimental radiation hepatitis. Science 175: 1481–1483

    PubMed  CAS  Google Scholar 

  • Kirkpatrick JB (1967) Pathogenesis of foam cell lesions of irradiated arteries. Am J Pathol 50: 291–309

    PubMed  CAS  Google Scholar 

  • Kwock L, Douglas WH, Lin PS, Bauer WE, Fanburg BL (1982) Endothelial cell damage after γ-irradiation in vitro: impaired uptake of a-aminoisobutyric acid. Annu Rev Respir Dis 125: 95–99

    CAS  Google Scholar 

  • Lauk S (1987) Endothelial alkaline phosphatase activity loss as an early stage in the development of radiation- induced heart disease in rats. Radiat Res 110: 118–128

    PubMed  CAS  Google Scholar 

  • Law MP (1981) Radiation-induced vascular injury and its relation to late effects in normal tissues. Adv Radiat Biol 9: 37–73

    CAS  Google Scholar 

  • Law MP (1985) Vascular permeability and late radiation fibrosis in mouse lung. Radiat Res 103: 60–76

    PubMed  CAS  Google Scholar 

  • Law MP, Thomlinson RH (1978) Vascular permeability in the ears of rats after x-irradiation. Br J Radiol 51: 895–904

    PubMed  CAS  Google Scholar 

  • Law MP, Ahier RG, Coultas PG (1986) The role of vascular injury in the radiation response of mouse lung. Br J Cancer 53 [Suppl VII]: 327–329

    Google Scholar 

  • Lindop PJ, Jones A, Bakowska A (1970) The effect of 14-MeV electrons on the blood vessels of the mouse earlobe. Proceedings of the NCIAEC Carmel Symposium on time and dose relationship in radiation biology as applied to radiotherapy. BNL 50203, pp 174–180.

    Google Scholar 

  • Maisin JR (1970) The ultrastructure of the lung of mice exposed to a supralethal dose of ionizing radiation on the thorax. Radiat Res 44: 545–564

    PubMed  CAS  Google Scholar 

  • Maisin JR, Oledzka-Slotwinska H, Lambiet-Collier M (1973) Ultrastructure of lung parenchyma and permeability changes of the blood air barrier after a local exposure of mice to 2000 R of x-rays. Adv Radiat Res Biol Med 3: 1347–1360

    Google Scholar 

  • Martin DG, Fischer JJ (1984) Radiation sensitivity of cultured rabbit aortic endothelial cells. Int J Radiat Oncol Biol Phys 10: 1903–1906

    PubMed  CAS  Google Scholar 

  • Martin M, Remy J, Daburon F (1986) In vitro growth potential of fibroblasts isolated from pigs with radiation- induced fibrosis. Int J Radiat Biol 49: 821–828

    CAS  Google Scholar 

  • Milas L, Hunter N, Peters LJ (1987) The tumor bed effect; dependence of tumor take, growth rate, and metastasis on the time interval between irradiation and tumor cell transplantation. Int J Radiat Oncol Biol Phys 13: 379–383

    PubMed  CAS  Google Scholar 

  • Miller G, Siemann D, Scott P, Dawson D, Muldrew K, Trépanier P, McGann L (1986) A semiquantitative probe for radiation-induced normal tissue damage at the molecular level. Radiat Res 105: 76–83

    PubMed  CAS  Google Scholar 

  • Mortimer PS, Simmonds RH, Rezvani MS, Hopewell JW, Ryan TJ (1985/1986) Lymph flow clearance changes in pig skin after a single dose of x-rays. CRC Normal Tissue Radiobiology Research Group (Univ. of Oxford), Annual Report, pp 33–34

    Google Scholar 

  • Mount D, Bruce WR (1964) Local plasma volume and vascular permeability of rabbit skin after irradiation. Radiat Res 23: 430–445

    PubMed  CAS  Google Scholar 

  • Moustafa HF, Hopewell JW (1979) Blood flow clearance changes in pig skin after single doses. Br J Radiol 52: 138–144

    PubMed  CAS  Google Scholar 

  • Moustafa HF, Hopewell JW (1980) Late functional changes in the vasculature of the rat brain after local x- irradiation. Br J Radiol 53: 21–25

    PubMed  CAS  Google Scholar 

  • Mühsam R (1904) Ueber Dermatitis der Hand nach Roentgenbestrahlung (Fingeramputation). Archiv, für Klin. Chirurgie, Bd. 74/2: 434–453

    Google Scholar 

  • Narayan K, Cliff WJ (1982) Morphology of irradiated microvasculature: a combined in vivo and electron- microscopic study. Am J Pathol 106: 47–62

    PubMed  CAS  Google Scholar 

  • Nias AHW (1974) The clinical significance of cell survival curves. In: Friedman M (ed) Biological and clinical basis of radiosensitivity. Thomas, Springfield, pp 156–169

    Google Scholar 

  • Obersteiner H (1965) The effect of ionizing radiation on the nervous system. Adv Biol Med Phys 10: 1–9

    Google Scholar 

  • Penhaligon M, Laverick M (1985) Radiation response of endothelial cells in vitro. Br J Radiol 58: 913–914

    PubMed  CAS  Google Scholar 

  • Phillips TL (1966) An ultrastructural study of the development of radiation injury in the lung. Radiology 87: 49–54

    PubMed  CAS  Google Scholar 

  • Plotnikova ED, Levitman MK, Shaposhnikova VV, Koshevoy JV, and Eidus LK (1984) Protection of microcirculation in rat brain against large radiation injury by gammaphos. Int J Radiat Oncol Biol Phys 10: 365–368

    PubMed  CAS  Google Scholar 

  • Rantanen J (1973) Radiation injury of connective tissue. Acta Radiol Supplementum 330

    Google Scholar 

  • Reed GB, Cox AJ (1966) The human liver after radiation injury. A form of veno-occlusive disease. Am J Pathol 48: 597–612

    PubMed  Google Scholar 

  • Reinhold HS (1974) Structural changes in blood vessels. Curr Top Radiat Res Q 10: 58–74

    PubMed  CAS  Google Scholar 

  • Reinhold HS, Buisman GH (1973) Radiosensitivity of capillary endothelium. Br J Radiol 46: 54–57

    PubMed  CAS  Google Scholar 

  • Reinhold HS, Buisman GH (1975) Repair of radiation damage to capillary endothelium. Br J Radiol 48: 727–731

    PubMed  CAS  Google Scholar 

  • Reinhold HS, Hopewell JW (1980) Late changes in the architecture of blood vessels of the rat brain after irradiation. Br J Radiol 53: 693–696

    PubMed  CAS  Google Scholar 

  • Rhee JG, Song CW (1986) The clonogenic response of bovine aortic endothelial; cells in culture to radiation. Radiat Res 106: 182–189

    PubMed  CAS  Google Scholar 

  • Robbins MEC, Hopewell JW (1988) Effects of single doses of x-rays on renal function in the pig after the irradiation of both kidneys. Radiother Oncol 11: 253–262

    PubMed  CAS  Google Scholar 

  • Rosen S, Swerdlow MA, Muerche RC, Pirani CL (1964) Radiation nephritis: light and electron microscopic observations. Am J Clin Pathol 41: 487–502

    PubMed  CAS  Google Scholar 

  • Rubin DB, Drab EA, Ts’ao C-H, Gardner D, Ward WF (1985) Prostacyclin synthesis in irradiated endothelial cells cultured from bovine aorta. The American Physiological Society, pp 592–597

    Google Scholar 

  • Rubin P, Casarett GW (1968) Clinical radiation pathology, vols. I and II. W.B. Saunders, Philadelphia

    Google Scholar 

  • Schweizer E (1924) Über spezifische Röntgenschädigungen des Herzmuskels. Strahlentherapie 18: 812–828

    Google Scholar 

  • Sheehan JF (1944) Foam cell plaques in intima of irradiated small arteries. Arch Pathol 37: 297–308

    Google Scholar 

  • Shulman HM, McDonald GB, Matthews D, Doney KC, Kopecky KJ, Gauvreau JM, Thomas ED (1980) An analysis of hepatic veno-occlusive disease and centrilobu- lar hepatic degeneration following bone marrow transplantation. Gastroenterology 79: 1178–1191

    PubMed  CAS  Google Scholar 

  • Shulman HM, Luk K, Deeg HJ, Shuman WB, Storb R (1987) Induction of hepatic veno-occlusive disease in dogs. Am J Pathol 126: 114–125

    PubMed  CAS  Google Scholar 

  • Silva-Horta J (1967) Late effects of thorotrast on the liver and spleen and their efferent lymph nodes. Ann NY Acad Sci 145: 676–699

    Google Scholar 

  • Sinzinger H, Firbas W (1985) Irradiation depresses prostacyclin generation upon stimulation with the platelet- derived growth factor. Br J Radiol 58: 1023–1026

    PubMed  CAS  Google Scholar 

  • Smith LH, Boss WR (1957) Effects of x-irradiation on renal function of rats. Am J Physiol 188: 367–370

    PubMed  CAS  Google Scholar 

  • Stewart FA, Denekamp J, Hirst DG (1980) Proliferation kinetics of the mouse bladder after irradiation. Cell Tissue Kinet 13: 75–89

    PubMed  CAS  Google Scholar 

  • Stewart JR, Fajardo LF (1984) Radiation-induced heart disease: an update. Prog Cardiovasc Dis XXVII: 173–194

    Google Scholar 

  • Stewart JR, Cohn KE, Fajardo LF, Hanock EW, Kaplan HS (1967) Radiation-induced heart disease. A study of 25 patients. Radiology 89: 302–310

    Google Scholar 

  • Takahashi T (1930) The action of radium upon the formation of blood capillaries and connective tissue. Br J Radiol 3: 439–445

    Google Scholar 

  • Tanaka A, Ueno H, Yamashita Y, Caveness WF (1975) Regional cerebral blood flow in delayed brain swelling following x-irradiation of the right occipital lobe in the monkey. Brain Res 96: 233–246

    PubMed  CAS  Google Scholar 

  • Tannock IF, Hayashi S (1972) The proliferation of capillary endothelial cells. Cancer Res 32: 77–82

    PubMed  CAS  Google Scholar 

  • Thomas E, Forbus WD (1959) Irradiation injury to the aorta and the lung. Arch Pathol 67: 256–263

    CAS  Google Scholar 

  • Trott KR (1984) Chronic damage after radiation therapy: challenge to radiation biology. Int J Radiat Oncol Biol Phys 10: 907–913

    PubMed  CAS  Google Scholar 

  • Ts’ao CH, Ward WF (1985) Plasminogen activator activity in lung and alveolar macrophages of rats exposed to graded single doses of gamma rays to the right hemothorax. Radiat Res 103: 393–402

    PubMed  Google Scholar 

  • Ts’ao CH, Ward WF, Port CD (1983a) Radiation injury in rat lung. I. Prostacyclin (PGI2) production, arterial perfusion, and ultrastructure. Radiat Res 96: 284–293

    PubMed  Google Scholar 

  • Ts’ao CH, Ward WF, Port CD (1983b) Radiation injury in rat lung. III. Plasminogen activator and fibrinolytic inhibitor activities. Radiat Res 96: 301–308

    PubMed  Google Scholar 

  • Turesson I, Notter G (1986) The predictive value of skin teleangiectasia for late radiation effects in different normal tissue. Int J Radiat Oncol Biol Phys 12: 603–609

    PubMed  CAS  Google Scholar 

  • Ullrich RL, Casarett GW (1977) Interrelationship between the early inflammatory response and subsequent fibrosis after radiation exposure. Radiat Res 72: 107–121 Academic, New York

    PubMed  CAS  Google Scholar 

  • van den Aardweg GJMJ, Hopewell JW, Simmonds RH (1987) Repair and necrosis in the epithelial and vascular connective tissues of pig skin after irradiation. Radiother Oncol 10: 73–82

    Google Scholar 

  • van den Brenk HAS (1959) The effect of ionizing radiation on capillary sprouting and vascular remodelling in the regenerating repair blastema observed in the rabbit ear chamber. AJR 81: 859–884

    Google Scholar 

  • van den Brenk HAS (1972) Macro-colony assay for measurement of reparative angiogenesis after x- irradiation. Int J Radiat Biol 21: 607–611

    Google Scholar 

  • van den Brenk HAS, Orton C, Stone M, Kelly H (1974a) Effects of x-radiation on growth and function of the repair blastema (granulation tissue). I. Wound contraction. Int J Radiat Biol 25: 1–19

    Google Scholar 

  • van den Brenk HAS, Sharpington C, Orton C, Stone M (1974b) Effects of x-radiation on growth and function of the repair blastema (granulation tissue). II. Measurements of angiogenesis in the Selye pouch in the rat. Int J Radiat Biol 25: 277–289

    Google Scholar 

  • Vegt GB, Wassenaar AM, Kawilarang-de Haas EWM, Schütte PP, van der Linden M, Di Bon-de Ruijter M, Boon A (1985) Radiation induced changes in the cell membrane of cultured human endothelial cells. Radiat Res 104: 317–328

    PubMed  CAS  Google Scholar 

  • Vergara JA, UR, Thet LA (1987) Changes in lung morphology and ceil number in radiation pneumonitis and fibrosis: a quantitative ultrastructural study. Int J Radiat Oncol Biol Phys 13: 723–732

    PubMed  CAS  Google Scholar 

  • Walklin CM, Law MP (1986) Biosynthesis of collagen in the lung of the mouse after x-irradiation. Br J Cancer 53 [Suppl VII]: 368–370

    CAS  Google Scholar 

  • Ward WF, Solliday NH, Molteni A, Port CD (1983) Radiation injury in rat lung. II. Angiotensin-convering enzyme activity. Radiat Res 96: 294–300

    PubMed  CAS  Google Scholar 

  • Ward WF, Molteni A, Solliday NH, Jones GE (1985) The relationship between endothelial dysfunction and collagen accumulation in irradiated rat lung. Int J Radiat Oncol Biol Phys 11: 1985–1990

    PubMed  CAS  Google Scholar 

  • Ward WF, Molteni A, Ts’ao CH, Solliday NH (1987a) Functional responses of the pulmonary endothelium to thoracic irradiation in rats: differential modification by d-penicillamine. Int J Radiat Oncol Biol Phys 13: 1505–1513

    PubMed  CAS  Google Scholar 

  • Ward WF, Molteni A, Ts’ao CH, Solliday NH (1987b) Pulmonary endothelial dysfunction induced by unilateral as compared to bilateral thoracic irradiation in rats. Radiat Res 111: 101–106

    PubMed  CAS  Google Scholar 

  • Warren S (1942) Effects of radiation on normal tissues. VI. Effects of radiation on the cardiovascular system. Arch Pathol 34: 1070–1079

    Google Scholar 

  • Warren S, Friedman NB (1942) Pathology and pathologic diagnosis of radiation lesions in the gastro-intestinal tract. Am J Pathol 18: 499–514

    PubMed  CAS  Google Scholar 

  • Wells FR (1963) The lymphatic vessels in radiodermatitis: a clinical and experimental study. Br J Plast Surg 16: 243–256

    PubMed  CAS  Google Scholar 

  • White DC (1975) An atlas of radiation histopathology. Technical Information Center, Office of Public Affairs, U.S. Energy Research and Development Administration

    Google Scholar 

  • Windholz F (1937) Zur Kennis der Blutgefässveränder- ungen im Röntgenbestrahlten Gewebe. Strahlentherapie 59: 662–670

    Google Scholar 

  • Withers HR, Peters LJ, Kogelnik HS (1980) The pathobiol- ogy of late effects of irradiation. In: Meyn RE, Withers HR (eds) Radiation Biology in Cancer Research. Raven, New York, pp 439–448

    Google Scholar 

  • Wolbach SB (1909) The pathological histology of chronic x-ray dermatitis and early x-ray carcinoma. J Med Res 21: 415–449

    PubMed  CAS  Google Scholar 

  • Yamaura H, Yamada K, Matsuzawa T (1976) Radiation effect on the proliferating capillaries in rat transparent chambers. Int J Radiat Biol 30: 179–187

    CAS  Google Scholar 

  • Young CMA, Hopewell JW (1983) The effect of preoperative x-irradiation on the survival and blood flow of pedicle skin flaps in the pig. Int J Radiat Oncol Biol Phys 9: 865–870

    PubMed  CAS  Google Scholar 

  • Zeman W, Samorajski T (1971) Effects of irradiation in the nervous system. In: Berdjis CC (ed) Pathology of irradiation. Williams and Wilkins, Baltimore, pp 213–277

    Google Scholar 

  • Zollinger HU (1970) Die Strahlenvasculopathie. Path Eur 5: 145–163

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reinhold, H.S., Hopewell, J.W., Calvo, W., Keyeux, A., Reyners, H. (1991). Vasculoconnective Tissue. In: Scherer, E., Streffer, C., Trott, KR. (eds) Radiopathology of Organs and Tissues. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83416-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83416-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83418-9

  • Online ISBN: 978-3-642-83416-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics