Skip to main content

Bone

  • Chapter

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

The clinical-radiological assessment of radiation damage to bone is discussed in detail by Kolář and Vrabec (1976). This review also contains a comprehensive summary of the literature. Assessment of clinically relevant changes solely from the viewpoint of morphological pathology and radiology, however, can result in a considerable misrepresentation, since massive tissue damage does not necessarily result in severe functional defects. Clinical manifestation of damage necessarily depends on functional strain on the tissue. A knowledge of pathomorphological changes is necessary if patients are to be protected from severe damage. In this sense the description of the general pathological changes which are associated with radiation damage in bone is complementary to the chapter by Kolář and Vrabec (1976). An attempt will be made to emphasize the formal pathogenesis and the general principles it follows so as to convey an idea of the fate of the tissue after being challenged by radiation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitasalo K (1986) Effect of irradiation on early enzymatic changes in healing mandibular periosteum and bone. A histochemical study on rats. Acta Radiol Oncol 25: 207–212

    PubMed  CAS  Google Scholar 

  • Albrektsson T, Jacobsson M, Turesson I (1980) Irradiation injury of bone tissue. A vital microscopic method. Acta Radiol Oncol 19: 235–239

    PubMed  CAS  Google Scholar 

  • Amsel S, Dell ES (1972) Bone formation by hemopoietic tissue: separation of preosteoblast from hemopoietic stem cell function in the rat. Blood 39: 267–273

    PubMed  CAS  Google Scholar 

  • Anderson C (1978) Bone-remodeling rates of the beagle: a comparison between sites on the same rib. Am J Vet Res 39: 1763–1765

    PubMed  CAS  Google Scholar 

  • Anderson ND, Colyer RA, Riley LH Jr (1979) Skeletal changes during prolonged external irradiation: alterations in marrow, growth plate and osteoclast populations. Johns Hopkins Med J 145: 73–83

    PubMed  CAS  Google Scholar 

  • Argüelles F, Gomar F, Garcia A, Esquerdo J (1977) Irradiation lesions of the growth plate in rabbits. J Bone Joint Surg [Br] 59: 85–88

    Google Scholar 

  • Arnold JS, Jee WSS (1957) Bone growth and osteoclastic activity as indicated by radioautographic distribution of plutonium. Am J Anat 101: 367–394

    PubMed  CAS  Google Scholar 

  • Arnold JS, Jee WSS (1959) Autoradiography in the localization and radiation dosage of Ra226 and Pu239 in the bones of dogs. Lab Invest 8: 194–203

    PubMed  CAS  Google Scholar 

  • Arnold M (1988) Der Einfluβ von Strahlendosis und Dosisfraktionierung auf die knöcherne Heilung eines definierten Bohrlochdefektes im Rattenfemur. Dissertation, Tierärztliche Fakultät der Ludwig-Maximilians- Universität München

    Google Scholar 

  • Aronson AS, Gustafsson M, Selvik G (1976) Bone growth in the rabbit after irradiation. Acta Radiol [Diagn] (Stockh) 17: 838–844

    CAS  Google Scholar 

  • Ascenzi A (1976) Physiological relationship and pathological interferences between bone tissue and marrow. In: Bourne GH (ed) The biochemistry and physiology of bone, vol IV, 2nd edn. Academic, New York, pp 403–444

    Google Scholar 

  • Axhausen G (1954) Die Ernährungsunterbrechungen am Knochen. Erg Allg Pathol 37: 207–257

    Google Scholar 

  • Azizkhan JC, Klagsbrun M (1980) Chondrocytes contain a growth factor that is localized in the nucleus and is associated with chromatin. Proc Natl Acad Sci USA 77: 2762–2766

    PubMed  CAS  Google Scholar 

  • Babicky A, Kolář J (1966) Generalized skeletal response to local radiation injury. Radiat Res 27: 108–118

    Google Scholar 

  • Bahous I, Müller W (1976) Die lokale Behandlung chronischer Arthritiden mit Radionukliden. Schweiz Med Wochenschr 106: 1065–1073

    PubMed  CAS  Google Scholar 

  • Baltadjiev G (1987) Stereological characteristics of the mesenchymal complex in the degenerative-osteogenic zone of the growth cartilage of the tibia of premature neonates. Anat Anz 163: 243–248

    PubMed  CAS  Google Scholar 

  • Barak F, Werner A, Walach N, Horn Y (1984) Extensive late bone necrosis after postoperative orthovoltage irradiation of breast carcinoma. Report of a case. Acta Radiol Oncol 23: 485–488

    PubMed  CAS  Google Scholar 

  • Barnhard HJ, Geyer RW (1962) Effects of x-radiation on growing bone. Radiology 78: 207–214

    PubMed  CAS  Google Scholar 

  • Barr JS, Lingley JR, Gall EA (1943) The effect of roentgen irradiation on epiphyseal growth. I. Experimental studies upon the albino rat. 49: 104–115

    Google Scholar 

  • Baserga R, Lisco H, Cater DC (1961) The delayed effects of external gamma irradiation on the bones of rats. Am J Pathol 39: 455–472

    PubMed  CAS  Google Scholar 

  • Baunach A (1935) Über den Einfluβ von Dosis und Rhythmus auf den Grad der Wachstumsschädigung des Knochenwachstums bei Röntgenstrahlungen. Strahlentherapie 54: 52–67

    Google Scholar 

  • Becker G, Lepp C, Pömsl H, Luz A (1972) Störung des Knochen-wachstums nach Incorporation von Ra-224 (Thorium X) bei der Maus. Verh Dtsch Ges Pathol 56: 448–452

    PubMed  CAS  Google Scholar 

  • Bedwinek JM, Shukovsky LJ, Fletcher GH, Daley TE (1976) Osteonecrosis in patients treated with definitive radiotherapy for squamous cell carcinomas of the oral cavity and naso- and oropharynx. Radiology 119: 665–667

    PubMed  CAS  Google Scholar 

  • Bélanger LF (1971) Osteocytic resorption. In: Bourne GH (ed) The biochemistry and physiology of bone, 2nd edn, vol III. Academic, New York, pp 239–270

    Google Scholar 

  • Bensted JPM, Courtenay VD (1965) Histological changes in the rat bone after varying doses of x-rays with particular reference to bone tumour production. Br J Radiol 38: 261–270

    PubMed  CAS  Google Scholar 

  • Bensted JPM, Blackett NM, Lamerton LF (1961) Histological and dosimetric considerations of bone tumour production with radioactive phosphorus. Br J Radiol 34: 160–175

    Google Scholar 

  • Birkner R (1953) 3 Fälle von Spontanfrakturen am Becken und Schenkelhals als Strahlenschädigungsfolge. Ideale Spontanheilung in 2 Fällen. Strahlentherapie 92: 297–307

    PubMed  CAS  Google Scholar 

  • Birkner R, Frey J, Ueberschär K-H (1956) Frühveränderungen am Knochen erwachsener Meerschweinchen nach Röntgenbestrahlung. Strahlentherapie 100: 574–590

    PubMed  CAS  Google Scholar 

  • Bisgard JD, Hunt HB (1936) Influence of roentgen rays and radium on epiphyseal growth of long bones. Radiology 26: 56–64

    Google Scholar 

  • Blackburn J, Wells AB (1963) Radiation damage to growing bone: the effect of x-ray doses of 100 to 1,000r on mouse tibia and knee-joint. Br J Radiol 36: 505–513

    PubMed  CAS  Google Scholar 

  • Blackett NM, Kember NF, Lamerton LF (1959) The measurement of radiation dosage distribution by autoradiographic means with reference to the effects of bone-seeking isotopes. Lab Invest 8: 171–178

    PubMed  CAS  Google Scholar 

  • Bleher EA, Tschäppeler H (1979) Spätveränderungen an der Wirbelsäule nach Strahlentherapie und kombinierter Behandlung bei Morbus Hodgkin im Kindes- und Adoleszentenalter. Strahlentherapie 155: 817–828

    PubMed  CAS  Google Scholar 

  • Bloom MA, Bloom W (1949) Late effects of radium and plutonium on bone. Arch Pathol 47: 494–511

    CAS  Google Scholar 

  • Bonarigo BC, Rubin P (1967) Nonunion of pathologic fracture after radiation therapy. Radiology 88: 889–898

    PubMed  CAS  Google Scholar 

  • Bond VP, Fliedner TM, Archambeau JO (1965) Mammalian radiation lethality. Academic, New York

    Google Scholar 

  • Bonfiglio M (1953) The pathology of fracture of the femoral neck following irradiation. Am Roentgenol 70: 449–459

    CAS  Google Scholar 

  • Bourne GH (1972) Phosphatase and calcification. In: Bourne GH (ed) Biochemistry and physiology of bone, vol I, 2nd edn. Academic, New York, pp 79–120

    Google Scholar 

  • Bradley JC (1972) Age changes in the vascular supply of the mandible. Br Dent J 132: 142–144

    PubMed  CAS  Google Scholar 

  • Bricout PB, Simanovsky M, Feldman MI, Mattii R (1985) Necrosis of the humeral head following postoperative supervoltage irradiation and chemotherapy in carcinoma of the breast. Br J Radiol 58: 562–563

    PubMed  CAS  Google Scholar 

  • Brooks B, Hillstrom HT (1933) Effect of roentgen rays on bone growth and bone regeneration. An experimental study. Am J Surg 20: 599–614

    Google Scholar 

  • Budras K-D, Hartung K, Münzer BM (1986) Licht- und elektronenmikroskopische Untersuchungen über den Einfluβ von Röntgenbestrahlung auf das Stratum synoviale des entzündeten Kniegelenks. Berl Münch Tierärztl Wochenschr 99: 148–152

    PubMed  CAS  Google Scholar 

  • Bures MF, Wuehrmann AH (1969a) Bone-remodeling dynamics following local x-irradiation: I. J Dent Res 48: 376–384

    PubMed  CAS  Google Scholar 

  • Bures MF, Wuehrmann AH (1969b) Bone remodeling dynamics following local x-irradiation: II. J Dent Res 48: 904–908

    PubMed  CAS  Google Scholar 

  • Bures MF, Wuehrmann AH (1969c) Bone remodeling dynamics after intraperitoneal administration of radioactive sodium phosphate (32P). J Dent Res 48: 909–912

    PubMed  CAS  Google Scholar 

  • Burstone MS (1952) A histochemical study of irradiated bone. Am J Pathol 28: 1133–1141

    PubMed  CAS  Google Scholar 

  • Calvo W, Fliedner TM, Steinbach I, Alcober V, Nothdurft W, Fache I (1978) Development of fibrosis in dogs as a late consequence of whole-body x-irradiation. In: Late biological effects of ionizing radiation, vol II. International Atomic Energy Agency, Vienna, pp 127–136

    Google Scholar 

  • Canalis E, McCarthy T, Centrella M (1988) Growth factors and the regulation of bone remodeling. J Clin Invest 81: 277–281

    PubMed  CAS  Google Scholar 

  • Carlson HC, Williams MMD, Childs DS, Dockerty MB, Janes JM (1960) Microangiography of bone in the study of radiation changes. Radiology 74: 113–114

    PubMed  CAS  Google Scholar 

  • Castenera TJ, Jones DC, Kimeldorf DJ (1971) The effect of age at exposure to a sublethal dose of fast neutrons on tumorigenesis in the male rat. Cancer Res 31: 1543–1549

    Google Scholar 

  • Chambers F, Ng E, Ogden H, Coggs G, Crane J (1958) Mandibular osteomyelitis in dogs following irradiation. Oral Surg 11: 843–859

    PubMed  CAS  Google Scholar 

  • Clayton PE, Shalet SM, Morris-Jones PH, Price DA (1988) Growth in children treated for acute lymphoblastic leukaemia. Lancet I: 460–462

    Google Scholar 

  • Coffin F (1983) The incidence and management of osteoradionecrosis of the jaws following head and neck radiotherapy. Br J Radiol 56: 851–857

    PubMed  CAS  Google Scholar 

  • Cohn SH (1961) Effect of aging and x-irradiation on the kinetics of skeletal metabolism in the rat. Radiat Res 15: 355–365

    PubMed  CAS  Google Scholar 

  • Cohn SH, Gong JK (1953a) Effect of 2000 roentgen local x-irradiation on the growth of rat bone. Growth 17: 7–20

    PubMed  CAS  Google Scholar 

  • Cohn SH, Gong JK (1953b) Effect of 2000 roentgens local x-irradiation on metabolism and alkaline phosphatase activity of rat bone. Am J Physiol 173: 115–119

    PubMed  CAS  Google Scholar 

  • Cole AA, Wezeman FH (1985) Perivascular cells in cartilage canals of the developing mouse epiphysis. Am J Anat 174: 119–129

    PubMed  CAS  Google Scholar 

  • Constine LS, Rubin P, Gregory P (1987) The differential protection by WR2721 of skin versus growing cartilage following irradiation in weanling rats. Radiat Res 110: 61–71

    PubMed  CAS  Google Scholar 

  • Cooley LM, Goss RJ (1958) The effects of transplantation and x-irradiation on the repair of fractured bones. Am J Anat 102: 167–181

    PubMed  CAS  Google Scholar 

  • Cottier H (1961) Strahlenbedingte Lebensverkürzung. Springer, Berlin Göttingen Heidelberg

    Google Scholar 

  • Cottier H (1966) Histopathologie der Wirkung ionisierender Strahlen auf höhere Organismen (Tier und Mensch). In: Zuppinger A (ed) Strahlenbiologie 2. Springer, Berlin Heidelberg New York (Handbuch der medizinischen Radiologie, vol II/2, pp 35–272)

    Google Scholar 

  • Cowell HR, Hunziker EB, Rosenberg L (1987) The role of hypertrophic chondrocytes in endochondral ossification and in the development of secondary centers of ossification. J Bone Joint Surg [Am] 69: 159–161

    CAS  Google Scholar 

  • Cutright DE, Brady JM (1971) Long-term effects of radiation on the vascularity of rat bone - quantitative measurements with a new technique. Radiat Res 48: 402–408

    PubMed  CAS  Google Scholar 

  • Dahl B (1936) De l’effet des rayons x sur les os longs en développement et sur la formation de cal. Etude radiobiologique et anatomique chez le rat. Skrifter utgitt av det Norske Videnskaps-Akademi i Oslo I. Matemat- isk-Naturvidenskapelig Klasse 1: 1–149

    Google Scholar 

  • Dalén N, Edsmyr F (1974) Bone mineral content of the femoral neck after irradiation. Acta Radiol [Ther] (Stockh) 13: 97–101

    Google Scholar 

  • Dambrain R, Dhem A (1984) Bone vitality in induced radionecrosis of the mandible estimated by osteocytic population counting. Strahlentherapie 160: 39–44

    PubMed  CAS  Google Scholar 

  • Dambrain R, Dhem A, Gueulette J, Wambersie A (1988) Bone vitality in the cat’s irradiated jaw. Histological study. Strahlenther Onkol 164: 351–356

    PubMed  CAS  Google Scholar 

  • Delgado E, Rodriguez JI, Serrada A, Tellez M, Paniagua R (1985) Radiation-induced osteochondroma-like lesion in young rat radius. Clin Orthop 201: 251–258

    PubMed  Google Scholar 

  • De Ridder L, Thierens H, Cornelissen M, Segaert O (1988) Effects of ionizing radiation on the metabolism and longitudinal growth of cartilaginous embryonic chick tibiae in vitro. Int J Radiat Biol 53: 965–975

    Google Scholar 

  • De Séze S, Ryckewaert A, Lequesne M, Freneaux B (1963) La hanche radiothérapique formes classiques et formes méconnues. Rev Rhum Mal Osteoartic 30: 695–705

    Google Scholar 

  • Desjardins AU (1930) Osteogenic tumor; growth injury of bone and muscular atrophy following therapeutic irradiation. Radiology 14: 296–307

    Google Scholar 

  • De Vries B, van den Berg WB, van der Putte LBA (1984) The effects of colloidal yttrium-90 silicate on the knee- joint of the mouse. Agents Actions 15: 101–103

    Google Scholar 

  • Dodds GS, Cameron HC (1934) Studies on experimental rickets in rats. I. Structural modifications of the epiphyseal cartilages in the tibia and other bones. Am J Anat 55: 135–165 (cited after Gall et al. 1940)

    CAS  Google Scholar 

  • Dziewiatkowski DD, Woodard HQ (1959) Effect of irradiation with x-rays on the uptake of S35 sulfate by the epiphyseal cartilage of mice. Lab Invest 8: 205–212

    PubMed  CAS  Google Scholar 

  • Eifel PJ (1988) Decreased bone growth arrest in weanling rats with multiple radiation fractions per day. Int J Radiat Oncol Biol Phys 15: 141–145

    PubMed  CAS  Google Scholar 

  • Eng W, Esterly JR (1972) Histochemical localization of enzymes in cartilage in neonatal and adult rats. Arch Pathol 94: 291–297

    PubMed  CAS  Google Scholar 

  • Engel D (1983) An experimental study of the action of radium on developing bones. Br J Radiol 11: 779–803

    Google Scholar 

  • Engel IA, Straus DJ, Lacher M, Lane J, Smith J (1981) Osteonecrosis in patients with malignant lymphoma. A review of twenty-five cases. Cancer 48: 1245–1250

    PubMed  CAS  Google Scholar 

  • Engström A (1964) Der Einfluβ strahlender Energie auf das Knochengewebe. Ergeb Allg Pathol Anat 45: 1–22

    Google Scholar 

  • Engström H, Turesson I, Waldenström J (1981) The effect of 50 kV x-ray irradiation on the alkaline phosphatase activity of growing rat bone. Int J Radiat Biol 40: 659–663

    Google Scholar 

  • Euratom-GSF (1967) Pathogenese genetischer und somatischer Strahlenschäden. Jahresbericht 1965, p 26 EUR 3270. d

    Google Scholar 

  • Ewing J (1926) Radiation osteitis. Acta Radiol (Stockh) 6: 399–412

    Google Scholar 

  • Fajardo LF (1982) Pathology of radiation injury. Masson, New York

    Google Scholar 

  • Fischer E (1955) Zur Häufigkeit der Skelettwachstumshem- mung bei Strahlenbehandlung der Hämangiome. Strahlentherapie 97: 599–607

    PubMed  CAS  Google Scholar 

  • Flaskamp W (1930) Über Röntgenschäden und Schäden durch radioaktive Substanzen. Strahlentherapie (Sonderb) 12: 1–354

    Google Scholar 

  • Fowler JF (1957) Absorbed dose near bone: a conductivity method of measurement. Br J Radiol 30: 361–366

    PubMed  CAS  Google Scholar 

  • Frandsen AM (1962) Effects of roentgen irradiation of the jaws on socket healing in young rats. Acta Odontol Scand 20: 307–353

    PubMed  CAS  Google Scholar 

  • Frantz CH (1950) Extreme retardation of epiphyseal growth from roentgen irradiation. Radiology 55: 720–724

    PubMed  CAS  Google Scholar 

  • Gall EA, Lingley JR, Hilcken JA (1940) Comparative experimental studies of 200 kilovolt and 1000 kilovolt roentgen rays. I. The biological effects on the epiphysis of the albino rat. Am J Pathol 16: 605–618

    PubMed  CAS  Google Scholar 

  • Gamer AO (1988) Histomorphologische und -morphometrische Untersuchungen von frühen Knochenschäden nach Inkorporation optimal kanzerogener Dosen von 239-Plutonium an männlichen Ratten verschiedenen Alters. Kernforschungszentrum Karlsruhe, KfK 4380

    Google Scholar 

  • Garrison JC, Uyeki EM (1988) The effects of gamma radiation on chondrogenic development in vitro. Radiat Res 116: 356–363

    PubMed  CAS  Google Scholar 

  • Gates O (1943) Effects of radiation on tissues. XII. Effects on bone, cartilage and teeth. AMA Arch Pathol 35: 323–340

    Google Scholar 

  • Gauwerky F (1958) Strahlenbedingte Wachstumsstörungen am Gesichtsschädel und deren Verhütung auf Grund biologischer Untersuchungen und klinischer Erfahrungen. Fortschr Kiefer Gesichtschir 4: 33–43

    Google Scholar 

  • Gauwerky F (1960) Über die Strahlenschädigung des wachsenden Knochens. Strahlentherapie 113: 325–350

    PubMed  CAS  Google Scholar 

  • Gerber GB, Métivier H, Smith H (eds) (1987) Age-related factors in radionuclide metabolism and dosimetry. Martinus Nijhoff, Dordrecht

    Google Scholar 

  • Goodrich WA, Lenz M (1948) Laryngeal chondronecrosis following roentgen therapy. Am J Roentgenol 60: 22–28

    CAS  Google Scholar 

  • Gössner W (1972) Grundlagen und allgemeine pathologische Anatomie der Strahlenschäden. Verh Dtsch Ges Pathol 56: 168–187

    PubMed  Google Scholar 

  • Gössner W, Schwabe M (1968) Histochemische Untersuchungen am Knochen nach Inkorporation von Ra-224 (Thorium X). Verh Dtsch Ges Pathol 52: 334–338

    PubMed  Google Scholar 

  • Gössner W, Schwabe M (1971) Enzymhistochemie des Knochengewebes. Z Orthop 109: 212–230

    PubMed  Google Scholar 

  • Gössner W, Calvo W, Zurcher C (1982) Pathological findings in lethally irradiated and reconstituted dogs. In: Fliedner TM, Gössner W, Patrick G (eds) Late effects after therapeutic whole-body irradiation. Commission of the European Communities. Luxembourg, pp 89–98 EUR 8070 EN

    Google Scholar 

  • Gowgiel JM (1960) Experimental radio-osteonecrosis of the jaws. J Dent Res 39: 176–197

    PubMed  CAS  Google Scholar 

  • Green N, French S, Rodriquez G, Hays M, Fingerhut A (1969) Radiation-induced delayed union of fractures. Radiology 93: 635–641

    PubMed  CAS  Google Scholar 

  • Gregg PJ, Walder DN (1980) Scintigraphy versus radiography in the early diagnosis of experimental bone necrosis. J Bone Joint Surg [Br] 62: 214–221

    Google Scholar 

  • Greve W (1952) Spontanfrakturen nach Röntgentiefenbe- strahlung. Strahlentherapie 86: 617–621

    Google Scholar 

  • Grimm G (1971) Klinische und experimentelle Untersuchungen über die radiogene Knochenschädigung am Kieferapparat. Nova Acta Leopoldina (Abhandlungen der Deutschen Akademie der Naturforscher Leopoldina), NF 36: 196

    Google Scholar 

  • Güngör T, Hedlund T, Hulth A, Johnell O (1982) The effect of irradiation on osteoclasts with or without transplantation of hematopoietic cells. Acta Orthop Scand 53: 333–337

    PubMed  Google Scholar 

  • Günsel E (1953) Die Strahlenschäden am wachsenden Knochen. Strahlentherapie 91: 595–601

    PubMed  Google Scholar 

  • Gutjahr P, Greinacher I, Kutzner J (1975) Ergebnisse der kombinierten Wilmstumor-Behandlung unter besonderer Berücksichtigung der therapiebedingten Skelettveränderungen. Strahlentherapie 149: 119–130

    PubMed  CAS  Google Scholar 

  • Gutjahr P, Greinacher I, Kutzner J (1976) Spätfolgen der Tumortherapie. Form- und Strukturveränderungen der Wirbelsäule im Röntgenbild. Dtsch Med Wochenschr 101: 988–992

    PubMed  CAS  Google Scholar 

  • Hagemann G (1970) Die Wirkung ionisierender Strahlen auf proliferierendes Knorpelgewebe, Dissertation. Fakultät für Mathematik und Naturwissenschaft, Technische Univ Hannover

    Google Scholar 

  • Hall BK (1981) Intracellular and extracellular control of the differentiation of cartilage and bone. Histochem J 13: 599–614

    PubMed  CAS  Google Scholar 

  • Hardt AB, Jee WSS (1982) Trabecular bone structural variation in biopsy sites of the beagle ilium. Calcif Tissue Int 34: 391–395

    PubMed  CAS  Google Scholar 

  • Hattner RS, Hartmeyer J, Wara WM (1982) Characterization of radiation-induced photopenic abnormalities on bone scans. Radiology 145: 161–163

    PubMed  CAS  Google Scholar 

  • Hazuka MB, Ibbott GS, Kinzie JJ (1988) HIP protheses during pelvic irradiation: effects and corrections. Int J Radiat Oncol Biol Phys 14: 1311–1317

    PubMed  CAS  Google Scholar 

  • Heaston DK, Libshitz HI, Chan RC (1979) Skeletal effects of megavoltage irradiation in survivors of Wilm’s tumor. Am J Roentgenol 133: 389–395

    CAS  Google Scholar 

  • Held F (1960) Die Bedeutung der Strahlenqualität für die schädigende Wirkung ionisierender Strahlung auf die Tibia-Epiphysenfuge der Albinoratte. Radiobiol Radiother (Berl) 1: 151–158

    Google Scholar 

  • Heller M (1948) Bone. In: Bloom W (ed) Histopathology of irradiation from external and internal sources. McGraw-Hill, New York, pp 70–161

    Google Scholar 

  • Hempelmann LH, Hall WJ, Phillips M, Cooper RA, Ames WR (1975) Neoplasms in persons treated with x-rays in infancy: fourth survey in 20 years. J Natl Cancer Inst 55: 519–530

    PubMed  CAS  Google Scholar 

  • Heuck F (1967) Allgemeine Radiologie und Morphologie der Knochenkrankheiten. In: Diethelm L (ed) Röntgendiagnostik der Skeletterkrankungen. Springer, Berlin Heidelberg New York (Handbuch der medizinischen Radiologie, vol V/1, pp 3–303

    Google Scholar 

  • Heuck F, Gössner W (1973) Strahlenempfindlichkeit der Knochen. In: Braun H von, Heuck F, Ladner HA, Messerschmidt O, Musshoff K, Streffer C (eds) Strahlenempfindlichkeit von Organen und Organsystemen der Säugetiere und des Menschen. Thieme, Stuttgart (Strahlenschutz in Forschung und Praxis, vol XIII, pp 153–171

    Google Scholar 

  • Heuck F, Lauritzen C (1967) Veränderungen von Mineralgehalt und Struktur des Femur nach gynäkologischer Strahlentherapie. Deutscher Röntgenkongress 1967, part B. Strahlentherapie [Sonderb] 66: 87–92

    Google Scholar 

  • Heuck F, Schmidt E (1960) Die quantitative Bestimmung des Mineralgehaltes der Knochen aus dem Röntgenbild. Fortschr Roentgenstr 93: 523–554

    PubMed  CAS  Google Scholar 

  • Hinkel CL (1942) The effect of roentgen rays upon the growing long bones of albino rats. I. Quantitative studies of the growth limitation following irradiation. Am J Roentgenol 47: 439–457

    Google Scholar 

  • Hinkel CL (1943a) The effect of roentgen rays upon the growing long bones of albino rats. II. Histopathological changes involving endochondral growth centers. Am J Roentgenol 49: 321–348

    Google Scholar 

  • Hinkel CL (1943b) The effect of irradiation upon the composition and vascularity of growing rat bones. Am J Roentgenol 50: 516–526

    Google Scholar 

  • Hoecker FE, Roofe PG (1951) Studies of radium in human bone. Radiology 56: 89–98

    PubMed  CAS  Google Scholar 

  • Hoffmann V (1923) Über Erregung und Lähmung tierischer Zellen durch Röntgenstrahlen. II. Experimentelle Untersuchungen an wachsenden Knochen von Kaninchen und Katzen. Strahlentherapie 14: 516–526

    Google Scholar 

  • Holtrop ME, King GJ (1977) The ultrastructure of the osteoclast and its functional implications. Clin Orthop 123: 177–196

    PubMed  Google Scholar 

  • Hörmann D, Kamprad F, Hofmann V, Willnow U (1978) Wachstumsstörungen des kindlichen Skeletts im Röntgenbild nach kombinierter Therapie von Wilms- Tumoren und Neuroblastomen. Kinderärztl Prax 9: 475–488

    Google Scholar 

  • Horn NL, Thompson M, Howes AE, Brown JM, Kallman RF, Probert JC (1974) Acute and chronic effects of x-irradiation on blood flow in the mouse limb. Radiology 113: 713–722

    PubMed  CAS  Google Scholar 

  • Horton MA (1988) Osteoclast-specific antigens. ISI atlas of science: immunology, pp 35–43

    Google Scholar 

  • Horvath J, Horvath F, Juhász E, Urbányi L (1962) Über die Strahlenschädigungen wachsender Knochen. Strahlentherapie 118: 462–478

    PubMed  CAS  Google Scholar 

  • Howland WJ, Loeffler RK, Starchman DE, Johnson RG (1975) Postirradiation atrophic changes of bone and related complications. Radiology 117: 677–685

    PubMed  CAS  Google Scholar 

  • Huffer WE (1988) Morphology and biochemistry of bone remodeling: possible control by vitamin D, parathyroid hormone, and other substances. Lab Invest 59: 418–442

    PubMed  CAS  Google Scholar 

  • Hulth A, Westerborn O (1960) Early changes of the growth zone in rabbit following roentgen irradiation. Acta Orthop Scand 30: 155–168

    PubMed  CAS  Google Scholar 

  • Hulth A, Westerborn O (1962) Early changes of the growth zone in the rabbit following roentgen irradiation: autoradiographic investigation after the administration of radiosulphate. Br J Exp Pathol 43: 137–141

    PubMed  CAS  Google Scholar 

  • Humphreys ER, Loutit JF (1980) Lesions in CBA mice from nanocurie amounts of 239Pu. Int J Radiat Biol 37: 307–314

    CAS  Google Scholar 

  • Humphreys ER, Green D, Howells GR, Thome MC (1982) Relationship between blood flow, bone structure, and 239Pu deposition in the mouse skeleton. Calcif Tissue Int 34: 416–421

    PubMed  CAS  Google Scholar 

  • Hunziker EB, Schenk RK, Cruz-Orive L-M (1987) Quantitation of chondrocyte performance in growth-plate cartilage during longitudinal bone growth. J Bone Joint Surg [Am] 69: 162–173

    CAS  Google Scholar 

  • Jacobsson M, Jönsson A, Albrektsson T, Turesson I (1985) Dose response for bone regeneration after single doses of 60Co irradiation. Int J Radiat Oncol Biol Phys 11: 1963–1969

    PubMed  CAS  Google Scholar 

  • Jacobsson M, Kälebo P, Tjellström A, Turesson I (1987) Bone cell viability after irradiation. An enzyme histoche- mical study. Acta Oncol 26: 463–465

    PubMed  CAS  Google Scholar 

  • Jaffe N, Ried HL, Cohen M, McNeese MD, Sullivan MP (1983) Radiation induced osteochondroma in long-term survivors of childhood cancer. Int J Radiat Oncol Biol Phys 9: 665–670

    PubMed  CAS  Google Scholar 

  • Jaworski ZFG (1987) Does the mechanical usage (MU) inhibit bone “remodeling”? Calcif Tissue Int 41: 239–248

    PubMed  CAS  Google Scholar 

  • Jee WSS (1971) Bone-seeking radionuclides and bones. In: Berdijs CC(ed) Pathology of irradiation. Williams & Wilkins, Baltimore, pp 186–212

    Google Scholar 

  • Jee WSS, Arnold JS (1961) The toxicity of plutonium deposited in skeletal tissues of beagles. Lab Invest 10: 797–825

    PubMed  CAS  Google Scholar 

  • Jee WSS, Nolan PD (1963) Origin of osteoclasts from fusion of phagocytes. Nature 200: 225–226

    PubMed  CAS  Google Scholar 

  • Jensh RP, Brent RL (1988) The effect of low level prenatal x-irradiation on postnatal growth in the Wistar rat. Growth Dev Aging 52: 53–62

    PubMed  CAS  Google Scholar 

  • Johnell O, Wiklund PE, Hulth A (1977) Osteoclast counting in crista biopsies. Acta Orthop Scand 48: 566–571

    PubMed  CAS  Google Scholar 

  • Johnson DR (1986) The genetics of the skeleton. Animal models of skeletal development. Clarendon, Oxford

    Google Scholar 

  • Jones SJ, Boyde A (1977) Some morphological observations on osteoclasts. Cell Tissue Res 185: 387–397

    PubMed  CAS  Google Scholar 

  • Jones SJ, Hogg NM, Shapiro IM, Slusarenko M, Boyde A (1981) Cells with Fc receptors in the cell layer next to osteoblasts and osteoclasts on bone. Metab Bone Dis Rel Res 2: 357–362

    Google Scholar 

  • Judy WS (1941) An attempt to correct asymmetry in leg length by roentgen irradiation. A preliminary report. Am J Roentgenol 46: 237–240

    Google Scholar 

  • Kember NF (1960) Cell division in endochondral ossification. J Bone Joint Surg [Br] 42: 824–839

    Google Scholar 

  • Kember NF (1962) Kinetics of population of bone-forming cells in the normal and irradiated rat. In: Dougherty F et al. (eds) Some aspects of internal irradiation. Pergamon, Oxford, pp 309–316

    Google Scholar 

  • Kember NF (1965) An in vivo cell survival system based on the recovery of rat growth cartilage from radiation injury. Nature 207: 501–503

    PubMed  CAS  Google Scholar 

  • Kember NF (1967) Cell survival and radiation damage in growth cartilage. Br J Radiol 40: 496–505

    PubMed  CAS  Google Scholar 

  • Kember NF (1971) Cell population kinetics of bone growth: the first ten years of autoradiographic studies with tritiated thymidine. Clin Orthop 76: 213–230

    PubMed  CAS  Google Scholar 

  • Kember NF (1979) Proliferation controls in a linear growth system: theoretical studies of cell division in the cartilage growth plate. J Theor Biol 78: 365–374

    PubMed  CAS  Google Scholar 

  • Kember NF (1983) Cytotoxic effects on cartilage growth plates. In: Potten CS, Hendry JH (eds) Cytotoxic insult to tissue. Churchill Livingstone, Edinburgh, pp 353–367

    Google Scholar 

  • Kember NF, Coggins J (1967) Changes in the vascular supply to rat growth cartilage during radiation injury and repair. Int J Radiat Biol 12: 143–151

    Google Scholar 

  • Kember NF, Lambert BE (1981) Slowly cycling cells in growing bone. Cell Tissue Kinet 14: 327–330

    PubMed  CAS  Google Scholar 

  • Kember NF, Sadek M (1970) Mitotic suppression in gut and growth cartilage by x-irradiation in vivo. Int J Radiat Biol 17: 19–23

    CAS  Google Scholar 

  • Kember NF, Sissons HA (1976) Quantitative histology of human growth plate. J Bone Joint Surg [Br] 58: 426–435

    Google Scholar 

  • Kember NF, Walker KVR (1971) Control of bone growth in rats. Nature 229: 428–429

    PubMed  CAS  Google Scholar 

  • Kimmel DB, Jee WSS (1980a) A quantitative histologic analysis of the growing long bone metaphysis. Calcif Tissue Int 32: 113–122

    PubMed  CAS  Google Scholar 

  • Kimmel DB, Jee WSS (1980b) Bone cell kinetics during longitudinal bone growth in the rat. Calcif Tissue Int 32: 123–133

    PubMed  CAS  Google Scholar 

  • Kimmel DB, Jee WSS (1982) A quantitative histologic study of bone turnover in young adult beagles. Anat Rec 203: 31–45

    PubMed  CAS  Google Scholar 

  • King MA, Casarett GW, Weber DA (1979) A study of irradiated bone: I. Histopathologic and physiologic changes. J Nucl Med 20: 1142–1149

    PubMed  CAS  Google Scholar 

  • King MA, Weber DA, Casarett GW, Burgener FA, Corriveau O (1980) A study of irradiated bone. Part II: Changes in Tc-99m pyrophosphate bone imaging. J Nucl Med 21: 22–30

    PubMed  CAS  Google Scholar 

  • Koch W (1957) Die spezifische Strahlenreaktion des Knochens. In: Graul EH (ed) Fortschritte der Angewandten Radioisotopie und Grenzgebiete, vol II. Hüthig, Heidelberg, pp 102–193

    Google Scholar 

  • Kofránek V, Parizek O, Svoboda V, Bubeniková D, Machek J (1977) 3H-TDR labelling of osteoprogenitor cells after 226Ra incorporation in mice. Acta Radiol Ther Phys Biol 16: 232–240

    PubMed  Google Scholar 

  • Kok G (1953) Spontaneous fractures of the femoral neck after the intensive irradiation of carcinoma of the uterus. Acta Radiol (Stockh) 40: 511–527

    CAS  Google Scholar 

  • Kolår J, Vrabec R (1959) Gelenkknorpelschäden nach Röntgenbestrahlung. Forschr Roentgenstr 90: 717–721

    Google Scholar 

  • Kolår J, Vrabec R (1976) Strahlenbedingte Knochenschäden. In: Diethelm L (ed) Röntgendiagnostik der Skeletterkrankungen. Springer, Berlin Heidelberg New York (Handbuch der medizinischen Radiologie, vol V/1, pp 389–512)

    Google Scholar 

  • Kolb HJ, Bender-Götze C, Janka G et al. (1982) Late radiation effects in patients treated with chemotherapy, total body irradiation and allogeneic bone marrow transplantation for relapsed, acute leukemia. In: Fliedner TM, Gössner W, Patrick G (eds) Late effects after therapeutic whole-body irradiation. Commission of the European Communities, Luxembourg, pp 27–33, EUR 8070 EN

    Google Scholar 

  • Kollath J (1964) Radiogene Schäden der Knochen, des Knochenmarks und der Gefäße nach Telekobaltbe- strahlung. I. Mitteilung: Experimente an Meerschweinchen, Bestrahlungen mit 5000 R Co60. Strahlentherapie 123: 614–622

    PubMed  CAS  Google Scholar 

  • Kollath J (1965) Radiogene Schäden der Knochen und der umgebenden Weichteile nach Telekobaltbestrahlung. II. Mitteilung: Experimente an Meerschweinchen, Bestrahlungen mit 10000 R Co60. Strahlentherapie 126: 432–448

    PubMed  CAS  Google Scholar 

  • Kummermehr J (1971) Mikroradiographische Untersuchungen über den Einbau und die Retention von Calcium-45 im Kniegelenk der Ratte nach lokaler Röntgenbestrahlung. Dissertation, Med Fakultät Lud- wig-Maximilian-Universität München

    Google Scholar 

  • Kuzma JF, Zander G (1957) Cancerogenic effects of Ca-45 and Sr-89 in Sprague Dawley rats. AMA Arch Pathol 63: 198–206

    PubMed  CAS  Google Scholar 

  • Lacroix P (1971) The internal remodeling of bones. In: Bourne GH (ed) The biochemistry and physiology of bone, vol III, 2nd edn. Academic, New York, pp 119–144

    Google Scholar 

  • Langenskiöld A (1988) Growth plate regeneration. In: Uhthoff HK, Wiley JJ (eds) Behavior of the growth plate. Raven, New York, pp 47–54

    Google Scholar 

  • Längle UW (1988) Frühe Knochenveränderungen nach Inkorporation kleiner Mengen von Alphastrahlern bei männlichen Ratten. Kernforschungszentrum Karlsruhe, KfK 4473

    Google Scholar 

  • Leblond CP, Weinstock M (1971) Radioautographic studies of bone formation. In: Bourne GH (ed) The biochemistry and physiology of bone, vol III, 2nd edn. Academic, New York, pp 181–200

    Google Scholar 

  • Leiper AD, Stanhope R, Lau T, Grant DB, Blacklock H, Chessells JM, Plowman PN (1987) The effect of total body irradiation and bone marrow transplantation during childhood and adolescence on growth and endocrine function. Br J Haematol 67: 419–426

    PubMed  CAS  Google Scholar 

  • Levy BM, Rugh R (1952) The effect of total body roentgen irradiation on the long bones of hamsters. Am J Roentgenol 67: 974–979

    CAS  Google Scholar 

  • Lind MG, Nathanson A (1977) 99Tcm-DP accumulation in rabbit skull bones after 60Co gamma irradiation. Acta Radiol [Ther] (Stockh) 16: 489–496

    CAS  Google Scholar 

  • Lloyd KW, Keys H, Hubbard L, Thomas F, Evarts C (1979) Use of irradiation after total hip replacement to prevent heterotopic bone formation (abstract). Int J Radiat Oncol Biol Phys [Suppl 2] 5: 208

    Google Scholar 

  • Lobodziec W, Lubas B (1966) Influence of transverse dimensions of bone on roentgen dose distribution for different qualities of primary radiation. Acta Radiol Ther Phys Biol 4: 471–480

    PubMed  CAS  Google Scholar 

  • Loutit JF, Nisbet NW, (1982) The origin of osteoclasts. Immunobiology 161: 193–203

    PubMed  CAS  Google Scholar 

  • Loutit JF, Townsend KMS (1982a) Longevity of osteoclasts in radiation chimaeras of beige and osteopetrotic microphthalmic mice. Br J Exp Pathol 63: 214–220

    PubMed  CAS  Google Scholar 

  • Loutit JF, Townsend KMS (1982b) Longevity of osteoclasts in radiation chimaeras of osteopetrotic beige and normal mice. Br J Exp Pathol 63: 221–223

    PubMed  CAS  Google Scholar 

  • Loutit JF, Marshall MJ, Nisbet NW, Vaughan JM (1982) Versatile stem cells in bone marrow. Lancet II: 1090–1093

    Google Scholar 

  • Lucht U (1972) Absorption of peroxidase by osteoclasts as studied by electron microscope histochemistry. Histochemie 29: 274–286

    PubMed  CAS  Google Scholar 

  • Luz A, Schäffer E, Erfle V et al. (1979) Vor- und Frühstadien des strahleninduzierten Osteosarkoms der Maus. Verh Dtsch Ges Pathol 63: 433–437

    CAS  Google Scholar 

  • Maciejewski B, Preuss-Bayer G, Trott K-R (1983) The influence of the number of fractions and of overall treatment time on local control and late complication rate in squamous cell carcinoma of the larynx. Int J Radiat Oncol Biol Phys 9: 321–328

    PubMed  CAS  Google Scholar 

  • Macpherson S, Owen M, Vaughan J (1962) The relation of radiation dose to radiation damage in the tibia of weanling rabbits injected with strontium 90. Br J Radiol 35: 221–234

    PubMed  CAS  Google Scholar 

  • Maeda M, Bryant MH, Yamagata M, Li G, Earle JD, Chao EYS (1988) Effects of irradiation on cortical bone and their time-related changes. J Bone Joint Surg [Am] 70: 392–399

    CAS  Google Scholar 

  • Marciani RD, Gonty AA, Giansanti JS, Avila J (1977) Autogenous cancellous-marrow bone grafts in irradiated dog mandibles. Oral Surg 43: 365–372

    PubMed  CAS  Google Scholar 

  • Marinelli LD, Kenney JM (1941) Absorption of radiophosphorus in irradiated and non-irradiated mice. Am J Roentgenol 37: 691–697

    CAS  Google Scholar 

  • Markbreiter LA, Pelker RR, Friedlaender GE, Peschel R, Panjabi MM (1989) The effect of radiation on the fracture repair process. A biomechanical evaluation of a closed fracture in a rat model. J Orthop Res 7: 178–183

    PubMed  CAS  Google Scholar 

  • Marks SC Jr, Popoff SN (1988) Bone cell biology: the regulation of development, structure, and function in the skeleton. Am J Anat 183: 1–44

    PubMed  Google Scholar 

  • Marquart K-H (1977) Early ultrastructural changes in osteocytes from the proximal tibial metaphysis of mice after the incorporation of 224Ra. Radiat Res 69: 40–53

    PubMed  CAS  Google Scholar 

  • Marquart K-H, Gössner W (1978) Histopathology of early effects of 224Ra on bone tissue. In: Müller WA, Ebert HG (eds) Biological effects of 224Ra. Nijhoff, The Hague, pp 149–157

    Google Scholar 

  • Marx RE (1983) Osteoradionecrosis: a new concept of its pathophysiology. J Oral Maxillofac Surg 41: 283–288

    PubMed  CAS  Google Scholar 

  • Matsuzuwa T, Anderson HC (1971) Phosphatases of epiphyseal cartilage studied by electron microscopic cytochemical methods. J Histochem Cytochem 19: 801–808

    Google Scholar 

  • Mauch PM, Weinstein H, Botnick L, Belli J, Cassady JR (1983) An evaluation of long-term survival and treatment complications in children with Hodgkin’s disease. Cancer 51: 925–932

    PubMed  CAS  Google Scholar 

  • Maugh II TH (1982) Human skeletal growth factor isolated. Science 217: 819

    PubMed  Google Scholar 

  • Meier A (1951) Einwirkung der Radiumstrahlen auf den wachsenden menschlichen Knochen. Strahlentherapie 84: 587–600

    PubMed  CAS  Google Scholar 

  • Melanotte PL, Follis RH (1961) Early effects of x- irradiation on cartilage and bone. Am J Pathol 29: 1–15

    Google Scholar 

  • Meisen F, Mosekilde L (1978) Tetracycline double-labeling of iliac trabecular bone in 41 normal adults. Calcif Tissue Res 26: 99–102

    Google Scholar 

  • Miller SC, Marks SC Jr (1982) Osteoclast kinetics in osteopetrotic (ia) rats cured by spleen cell transfers from normal littermates. Calcif Tissue Int 34: 422–427

    PubMed  CAS  Google Scholar 

  • Möell C, Garwicz S (1988) Growth in children treated for acute lymphoblastic leukaemia. Lancet I: 1335

    Google Scholar 

  • Möell C, Garwicz S, Westgren U, Wiebe T (1987) Disturbed pubertal growth in girls treated for acute lymphoblastic leukemia. Pediatr Hematol Oncol 4: 1–5

    PubMed  Google Scholar 

  • Mole RH (1982) Consequences of pre-natal radiation exposure for post-natal development. A review. Int J Radiat Biol 42: 1–12

    CAS  Google Scholar 

  • Morgan DB (1984) Osteoporosis. Surv Synth Pathol Res 3: 442–456

    PubMed  CAS  Google Scholar 

  • Morrish RB, Chan E, Silverman S, Meyer J, Fu KK, Greenspan D (1981) Osteonecrosis in patients irradiated for head and neck carcinoma. Cancer 47: 1980–1983

    PubMed  Google Scholar 

  • Morse BS, Giuliani D, Giuliani ER (1974) Effects of radiation on bone formation: a functional assessment. Radiat Res 60: 307–313

    PubMed  CAS  Google Scholar 

  • Murray CG, Daly TE, Zimmerman SO (1980) The relationship between dental disease and radiation necrosis of the mandible. Oral Surg 49: 99–104

    PubMed  CAS  Google Scholar 

  • Myers R, Robinson JE, Field SB (1980) The relationship between heating time and temperature for inhibition of growth in baby rat cartilage by combined hyperthermia and x-rays. Int J Radiat Biol 38: 373–382

    CAS  Google Scholar 

  • Neuhauser EBD, Wittenborg MH, Berman CZ, Cohen J (1952) Irradiation effects of roentgen therapy on the growing spine. Radiology 59: 637–650

    PubMed  CAS  Google Scholar 

  • Ng E, Chambers FW, Ogden HS, Coggs GC, Crane JT (1959) Osteomyelitis of the mandible following irradiation. Radiology 72: 68–74

    PubMed  CAS  Google Scholar 

  • Nilsson A (1969) Der Effekt der ionisierenden Strahlung auf das Skelett. In: Dobberstein J, Pallaske G, Stünzi H (eds) Handbuch der Spez Path Anat der Haustiere, vol I, 3rd edn. Parey, Berlin, pp 456–487

    Google Scholar 

  • Norris WP, Cohn SH (1952) The effect of injected radium on the alkaline phosphatase activity of bone and tissues. J Biol Chem 196: 255–264

    PubMed  CAS  Google Scholar 

  • Ogden JA (1988) Skeletal growth mechanism injury patterns. In: Uhthoff HK, Wiley JJ (eds) Behavior of the growth plate. Raven, New York, pp 85–96

    Google Scholar 

  • Owen M (1971) Cellular dynamics of bone. In: Bourne GH (ed) The biochemistry and physiology of bone, vol III, 2nd edn. Academic, New York, pp 271–298

    Google Scholar 

  • Owen M (1978) Histogenesis of bone cells. Calcif Tissue Res 25: 205–207

    PubMed  CAS  Google Scholar 

  • Parker RG (1972) Tolerance of mature bone and cartilage in clinical radiation therapy. Front Radiat Ther Oncol 6: 312–331

    Google Scholar 

  • Parker RG, Berry HC (1976) Late effects of therapeutic irradiation on the skeleton and bone marrow. Cancer 37: 1162–1171

    PubMed  CAS  Google Scholar 

  • Pesch H-J, Henschke F, Seibold H (1977) Einfluβ von Mechanik und Alter auf den Spongiosaumbau in Lendenwirbelkörpern und im Schenkelhals. Virchows Arch [A] 377: 27–42

    CAS  Google Scholar 

  • Phemister DB (1926) Radium necrosis of bone. Am J Roentgenol 16: 340–348

    Google Scholar 

  • Phillips RD, Kimeldorf DJ (1966) Age and dose dependence of bone growth retardation induced by x- irradiation. Radiat Res 27: 384–396

    PubMed  CAS  Google Scholar 

  • Pogrund H, Yosipovitch Z (1976) Osteochondroma following irradiation. Isr J Med Sci 12: 154–157

    PubMed  CAS  Google Scholar 

  • Polig E, Kimmel DB, Jee WSS (1984) Morphometry of bone cell nuclei and their location relative to bone surfaces. Phys Med Biol 29: 939–952

    PubMed  CAS  Google Scholar 

  • Polig E, Jee WSS, Dell RB, Johnson F (1988) Microdistribution and local dosimetry of 226Ra in trabecular bone of the beagle. Radiat Res 116: 263–282

    PubMed  CAS  Google Scholar 

  • Pömsl H (1974) Frühschäden and Tibia und Wirbel der Maus nach Inkorporation von Thorium-227 und Radium- 224. Dissertation, Fakultät für Medizin der Technischen Universität München

    Google Scholar 

  • Priest ND (ed) (1985) Metals in bone. MTP, Lancaster

    Google Scholar 

  • Pritchard JJ (1972) The osteoblast. In: Bourne GH (ed) The biochemistry and physiology of bone, vol 1, 2nd edn. Academic, New York, pp 21–43

    Google Scholar 

  • Probert JC, Parker BR (1975) The effects of radiation therapy on bone growth. Radiology 114: 155–162

    PubMed  CAS  Google Scholar 

  • Prosnitz LR, Lawson JP, Friedlander GE, Farber LR, Pezzimenti JF (1981) Avascular necrosis of bone in Hodgkin’s disease patients treated with combined modality therapy. Cancer 47: 2793–2797

    PubMed  CAS  Google Scholar 

  • Putzke HP (1963) Histochemische Untersuchungen der Tibiaepiphyse der Ratte nach Röntgen- und Kobaltbestrahlung. Acta Histochem 15: 241–250

    Google Scholar 

  • Rabbett WF (1965) Juvenile laryngeal papillomatosis. The relation of irradiation to malignant degeneration in this disease. Ann Otol Rhinol Laryngol 74: 1149–1163

    PubMed  CAS  Google Scholar 

  • Raisz LG (1988) Local and systemic factors in the pathogenesis of osteoporosis. N Engl J Med 318: 818–828

    PubMed  CAS  Google Scholar 

  • Ranudd NE (1966) Dose distribution studies in external irradiation of carcinoma colli uteri. Acta Radiol Ther Phys Biol 4: 353–362

    PubMed  CAS  Google Scholar 

  • Ray RD (1976) Circulation and bone, In: Bourne GH (ed) The biochemistry and physiology of bone, vol IV, 2nd edn. Academic, New York, pp 385–402

    Google Scholar 

  • Ray RD, Thompson DM, Wolf NK, La Violette D (1956) Bone metabolism. II. Toxicity and metabolism of radioactive strontium in rats. J Bone Joint Surg [Am] 38: 160–174

    Google Scholar 

  • Regen EM, Wilkins WE (1936) Influence of roentgen irradiation on rate of healing of fractures and phosphatase activity of callus of adult bone. J Bone Joint Surg [Am] 18: 69–79

    Google Scholar 

  • Regezi JA, Courtney RM, Kerr DA (1976) Dental managements of patients irradiated for oral cancer. Cancer 38: 994–1000

    PubMed  CAS  Google Scholar 

  • Reidy JA, Lingley JR, Gall EA, Barr JS (1947) Effect of roentgen irradiation on epiphyseal growth. J Bone Joint Surg [Am] 29: 853–873

    CAS  Google Scholar 

  • Reining J, Heß F, Pfab R (1988) Strahlenbehandlung nach Hüfttotalendoprothese gegen periartikuläre Verknöcherungen. Dtsch Ärztebl 85: C-1031

    Google Scholar 

  • Rhinelander FW (1972) Circulation of bone. In: Bourne GH (ed) Biochemistry and physiology of bone, vol II, 2nd edn. Academic, New York, pp 2–77

    Google Scholar 

  • Rissanen P, Rokkanen P, Paatsama S (1969a) The effect of Co60 irradiation on bone in dogs, part I. Mature bone. Strahlentherapie 137: 162–169

    PubMed  CAS  Google Scholar 

  • Rissanen P, Rokkanen P, Paatsama S (1969b) The effect of Co60 irradiation on bone in dogs, part II. Growing bone. Strahlentherapie 137: 344–354

    PubMed  CAS  Google Scholar 

  • Rohrer MD, Kim Y, Fayos JV (1979) The effect of cobalt-60 irradiation on monkey mandibles. Oral Surg 48; 424–440

    PubMed  CAS  Google Scholar 

  • Rosenstock JG, Jones PM, Pearson D, Palmer MK (1978) Ewing’s sarcoma, adjuvant chemotherapy and pathologic fracture. Eur J Cancer 14: 799–803

    PubMed  CAS  Google Scholar 

  • Rosenthall L, Marvin JF (1957) The effect of roentgen-ray quality on bone growth and cortical bone damage. Am J Roentgenol 77: 893–898

    Google Scholar 

  • Rossleigh MA, Smith J, Straus DJ, Engel IA (1986) Osteonecrosis in patients with malignant lymphoma. A review of 31 cases. Cancer 58: 1112–1116

    PubMed  CAS  Google Scholar 

  • Rowland RE, Marshall JH (1959) Radium in human bone, the dose in microscopic volumes in bone. Radiat Res 11: 299–313

    PubMed  CAS  Google Scholar 

  • Rowland RE, Jowsey J, Marshall JH (1958) Structural changes in human bone containing 226Ra. Proc 2nd UN Int Conf on the Peaceful Uses of Atomic Energy, Geneva. 22: 242–246

    Google Scholar 

  • Rowland RE, Jowsey J, Marshall JH (1959a) Microscopic metabolism of calcium in bone. III. Microradiographic measurements of mineral density. Radiat Res 10: 234–242

    PubMed  CAS  Google Scholar 

  • Rowland RE, Marshall JH, Jowsey J (1959b) Radium in human bone, the microradiographic appearance. Radiat Res 10: 323–334

    PubMed  CAS  Google Scholar 

  • Rubin P, Casarett GW (1968) Clinical radiation pathology, vol II. Saunders, Philadelphia

    Google Scholar 

  • Rubin P, Casarett G (1972) A direction for clinical radiation pathology. Front Radiat Ther Oncol 6: 1–16

    Google Scholar 

  • Rubin P, Brace KC, Gump H, Swarm R, Andrews JR (1957) The radiotoxic effects of S35 in growing cartilage. Radiology 69: 711–719

    PubMed  CAS  Google Scholar 

  • Rubin P, Andrews JR, Swarm R, Gump H (1959) Radiation induced dysplasias of bone. Am J Roentgenol 82: 206–216

    CAS  Google Scholar 

  • Salinger S (1942) Arrested development of the larynx following irradiation for recurring papillomas. Ann Otol Rhinol Laryngol 51: 273–277

    Google Scholar 

  • Sams A (1963) Effect of x-irradiation on the circulatory system of the hind limb of the mouse. Int J Radiat Biol 7: 113–129

    CAS  Google Scholar 

  • Sams A (1965a) Histological changes in the larger blood vessels of the hind limb of the mouse after x-irradiation. Int J Radiat Biol 9: 165–174

    CAS  Google Scholar 

  • Sams A (1965b) The long term effects of 2000 r of x-rays on the bone marrow of the mouse tibia. Br J Radiol 38: 914–919

    PubMed  CAS  Google Scholar 

  • Sams A (1966a) The effect of 2000 r of x-rays on the acid and alkaline phosphatase of mouse tibiae. Int J Radiat Biol 10: 123–140

    CAS  Google Scholar 

  • Sams A (1966b) The effect of 2000 r of x-rays on the internal structure of the mouse tibia. Int J Radiat Biol 11: 51–68

    CAS  Google Scholar 

  • Sandberg M, Vuorio T, Hirvonen H, Alitalo K, Vuorio E (1988) Enhanced expression of TGF-β and c-fos mRNAs in the growth plates of developing human long bones. Development 102: 461–470

    PubMed  CAS  Google Scholar 

  • Sanders JE, Pritchard S, Mahoney P et al. (1986) Growth and development following marrow transplantation for leukemia. Blood 68: 1129–1135

    PubMed  CAS  Google Scholar 

  • Scheven BAA, Wassenaar A-M, Kawilarang-de Haas EWM, Nijweide PJ (1987) Comparison of direct and indirect radiation effects on osteoclast formation from progenitor cells derived from different hemopoietic sources. Radiat Res 111: 107–118

    PubMed  CAS  Google Scholar 

  • Scott BL, Glimcher MJ (1971) Distribution of glycogen in osteoblasts of the fetal rat. J Ultrastruct Res 36: 565–586

    PubMed  CAS  Google Scholar 

  • Seelentag W, Kistner G (1969) Erzeugung von Krankheiten des Skeletts durch Strahlung. In: Eichler O (ed) Stütz- und Hartgewebe. Springer, Berlin Heidelberg New York (Handbuch der experimentellen Pharmakologie, vol XVI/8, pp 96–169)

    Google Scholar 

  • Sela J, Deutsch D, Bodner L, Bab I, Waschler Z, Muhlrad A (1982) Effect of x-ray irradiation on primary mineralization in rat alveolar bone. Virchows Arch [A] 398: 11–18

    CAS  Google Scholar 

  • Sengupta S, Prathap K (1973) Radiation necrosis of the humerus. A report of three cases. Acta Radiol [Ther] (Stockh) 12: 313–320

    CAS  Google Scholar 

  • Sherman MS, Selakovich WG (1957) Bone changes in chronic circulatory insufficiency. A histopathology study. J Bone Joint Surg [Am] 39: 892–901

    Google Scholar 

  • Shipley PG, Macklin CC (1916/17) Some features of osteogenesis in light of vital staining. Am J Physiol 42: 117–123

    Google Scholar 

  • Shohoji T, Pasternak B (1973) Adolescent growth patterns in survivors exposed prenatally to the A-bombs in Hiroshima and Nagasaki. Health Phys 25: 17–27

    PubMed  CAS  Google Scholar 

  • Silbermann M, Frommer J (1972a) Vitality of chondrocytes in the mandibular condyle as revealed by collagen formation. An autoradiographic study with 3H-proline. Am J Anat 135: 359–370

    PubMed  CAS  Google Scholar 

  • Silbermann M, Frommer J (1972b) Further evidence for the vitality of chondrocytes in the mandibular condyle as revealed by 35S-sulfate autoradiography. Anat Rec 174: 503–512

    PubMed  CAS  Google Scholar 

  • Silbermann M, Lewinson D, Gonen H, Lizarbe MA, von der Mark K (1983) In vitro transformation of chondro- progenitor cells into osteoblasts and the formation of new membrane bone. Anat Rec 206: 373–383

    PubMed  CAS  Google Scholar 

  • Silverman CL, Thomas PRM, McAlister WH, Walker S, Whiteside LA (1981) Slipped femoral capital epiphyses in irradiated children: dose, volume and age relationships. Int J Radiat Oncol Biol Phys 7: 1357–1363

    PubMed  CAS  Google Scholar 

  • Simmons DJ (1976) Comparative physiology of bone. In: Bourne GH (ed) The biochemistry and physiology of bone, vol IV, 2nd edn. Academic, New York, pp 445–516

    Google Scholar 

  • Sissons HA (1956) Experimental study of the effect of local irradiation of bone growth. In: Mitchell JS (ed) Proc 4th Intern Conf on Radiobiol 1955, Cambridge. Oliver & Boyd, Edinburgh pp 436–448

    Google Scholar 

  • Sissons HA (1971) The growth of bone. In: Bourne GH (ed) The biochemistry and physiology of bone, vol III, 2nd edn. Academic, New York, pp 145–180

    Google Scholar 

  • Smith JM, Miller SC, Jee WSS (1982) The microdistribution and local dosimetry of plutonium: effects of bone marrow microvasculature (abstract). Radiat Res 91: 297

    Google Scholar 

  • Smith R (1987) Osteoporosis: cause and management. Br Med J 294: 329–332

    CAS  Google Scholar 

  • Smith R, Davidson JK, Flatman GE (1982) Skeletal effects of orthovoltage and megavoltage therapy following treatment of nephroblastoma. Clin Radiol 33: 601–613

    PubMed  CAS  Google Scholar 

  • Sonneveld P, van Bekkum DW (1979) The effect of whole-body irradiation on skeletal growth in rhesus monkeys. Radiology 130: 789–791

    PubMed  CAS  Google Scholar 

  • Sontag W (1980) An automatic microspectrophotometric scanning method for the measurement of bone formation rates in vivo. Calcif Tissue Int 32: 63–68

    PubMed  CAS  Google Scholar 

  • Sontag W (1986a) Quantitative measurements of periosteal and cortical-endosteal bone formation and resorption in the midshaft of female rat femur. Bone 7: 55–62

    PubMed  CAS  Google Scholar 

  • Sontag W (1986b) Quantitative measurements of periosteal and cortical-endosteal bone formation and resorption in the midshaft of male rat femur. Bone 7: 63–70

    PubMed  CAS  Google Scholar 

  • Sontag W (1987) Dosimetry of alpha-emitting radionuclides in bone - a practical approach. Health Phys 53: 495–501

    PubMed  CAS  Google Scholar 

  • Soskolne WA (1978) Phagocytosis of osteocytes by osteoclasts in femora of two week-old rabbits. Cell Tissue Res 195: 557–564

    PubMed  CAS  Google Scholar 

  • Spangler D (1941) The effect of x-ray therapy for closure of the epiphyses: preliminary report. Radiology 37: 310–314

    Google Scholar 

  • Spiers FW (1949) The influence of energy absorption and electron range on dosage in irradiated bone. Br J Radiol 22: 521–533

    PubMed  CAS  Google Scholar 

  • Spiess H, Mays CW (1979) Exostoses induced by 224Ra (ThX) in children. Eur J Pediatr 132: 271–276

    PubMed  CAS  Google Scholar 

  • Spiess H, Mays CW, Spiess-Paulus E (1986) Growth retardation in children injected with 224Ra. In: Gössner W, Gerber GB, Hagen U, Luz A (eds) The radiobiology of radium and thorotrast. Urban & Schwarzenberg, Munich

    Google Scholar 

  • Stampfli WP, Kerr HD (1947) Fractures of femoral neck following pelvic irradiation. Am J Roentgenol 57: 71–83

    CAS  Google Scholar 

  • Stephenson WH, Cohen B (1956) Post-irradiation fractures of the neck of the femur. J Bone Joint Surg [Br] 38: 830–845

    Google Scholar 

  • Sylvester JE, Greenberg P, Selch MT, Thomas BJ, Amstutz H (1988) The use of postoperative irradiation for the prevention of heterotopic bone formation after total HIP replacement. Int J Radiat Oncol Biol Phys 14: 471–476

    PubMed  CAS  Google Scholar 

  • Tannock IF, Hayashi S (1972) The proliferation of capillary endothelial cells. Cancer Res 32: 77–82

    PubMed  CAS  Google Scholar 

  • Teft M (1972) Radiation effect on growing bone and cartilage. Front Radiat Ther Oncol 6: 289–311

    Google Scholar 

  • Thurner J (1970) latrogene Pathologie. Urban & Schwarzenberg, Munich

    Google Scholar 

  • Thyberg J (1972) Ultrastructural localization of arylsul- fatase activity in the epiphyseal plate. J Ultrastruct Res 38: 332–342

    PubMed  CAS  Google Scholar 

  • Thyberg J, Friberg U (1972) Electron microscopic enzyme histochemical studies on the cellular genesis of matrix vesicles in the epiphyseal plate. J Ultrastruct Res 41: 43–59

    PubMed  CAS  Google Scholar 

  • Thyberg J, Lohmander S, Friberg U (1973) Electron microscopic demonstration of proteoglycans in guinea pig epiphyseal cartilage. J Ultrastruct Res 45: 407–427

    PubMed  CAS  Google Scholar 

  • Timothy AR, Tucker AK, Park WM, Cannell LB (1978) Osteonecrosis in Hodgkin’s disease. Br J Radiol 51: 328–332

    PubMed  CAS  Google Scholar 

  • Tonna EA (1963) Origin of osteoclasts from fusion of phagocytes. Nature 200: 226–227

    PubMed  CAS  Google Scholar 

  • Tonna EA (1972) An electron microscopic study of osteocyte release during osteoclasis in mice of different ages. Clin Orthop 87: 311–317

    PubMed  CAS  Google Scholar 

  • Triffitt JT (1987) Initiation and enhancement of bone formation. A review. Acta Orthop Scand 58: 673–684

    PubMed  CAS  Google Scholar 

  • Ubios AM, Guglielmotti MB, Cabrini RL (1986) Effect of diphosphonate on the prevention of x-irradiation- induced inhibition of bone formation in rats. J Oral Pathol 15: 500–505

    PubMed  CAS  Google Scholar 

  • Ueberschär K-H (1959) Tierexperimentelle Untersuchungen über Verlauf und Reparation der radiogenen Knochenschädigung. Strahlentherapie 110: 529–540

    Google Scholar 

  • Uhthoff HK, Wiley JJ (eds) (1988) Behavior of the growth plate. Raven, New York

    Google Scholar 

  • Urist MR, Hernandez A (1974) Excitation transfer in bone. Deleterious effects of cobalt 60 radiation-sterilization of bank bone. Arch Surg 109: 486–493

    Google Scholar 

  • Vaeth JM, Levitt SH, Jones MD, Holfreter C (1962) Effects of radiation therapy in survivors of Wilms’ tumor. Radiology 79: 560–568

    PubMed  CAS  Google Scholar 

  • van Caneghem P, Schirren CG (1956) Tierexperimentelle Untersuchungen zur Frage der Röntgenstrahlenempfind- lichkeit von Knochenwachstumszonen. Strahlentherapie 100: 433–444

    Google Scholar 

  • van der Plas A, Nijweide PJ (1988) Cell-cell interactions in the osteogenic compartment of bone. Bone 9: 107–111

    PubMed  Google Scholar 

  • Vaughan JM (1973) The effects of irradiation on the skeleton. Clarendon, Oxford

    Google Scholar 

  • Vaughan J (1981) Osteogenesis and haematopoiesis. Lancet II: 133–136

    Google Scholar 

  • Vaughan J, Owen M (1959) The use of autoradiography in the measurement of radiation dose-rate in rabbit bones following the administration of Sr90. Lab Invest 8: 181–191

    PubMed  CAS  Google Scholar 

  • von Rottkay P (1985) Bericht über zwei Fälle von strahleninduzierten Knochennekrosen an Brustwirbelkörpern bei Bronchialkarzinomen nach akzelerierter Bestrahlung. Strahlentherapie 161: 704–705

    Google Scholar 

  • Wachsmann F (1949) Ausblick auf die Anwendung’smög- lichkeiten der Elektronenschleuder in der Medizin und bisherige Versuchsergebnisse mit ultraharten Strahlungen. Acta Radiol (Stockh) 32: 146–158

    Google Scholar 

  • Walker KVR, Kember NF (1972a) Cell kinetics of growth cartilage in the rat tibia. I. Measurements in young male rats. Cell Tissue Kinet 5: 401–408

    PubMed  CAS  Google Scholar 

  • Walker KVR, Kember NF (1972b) Cell kinetics of growth cartilage in the rat tibia. II. Measurements during ageing. Cell Tissue Kinet 5: 409–419

    PubMed  CAS  Google Scholar 

  • Wang CC, Doppke K (1976) Osteoradionecrosis of the temporal bone - consideration of nominal standard dose. Int J Radiat Oncol Biol Phys 1: 881–883

    PubMed  CAS  Google Scholar 

  • Wegener K (1970) Osteodystrophy after inhalation of radon-222. Virchows Arch [A] 350: 179–182

    CAS  Google Scholar 

  • Weiss JF, Catravas GN, Reddi AH (1982) Influence of radiation on matrix-induced endochondral bone differentiation (abstract). Radiat Res 91: 353

    Google Scholar 

  • Wells AB (1969) The effect of acute and fractionated doses of x-rays on the growth of the mouse tibia. Br J Radiol 42: 364–371

    PubMed  CAS  Google Scholar 

  • Wieland C (1983) Wirbelveränderungen nach Bestrahlung eines Ösophaguskarzinoms. Strahlentherapie 159: 211–213

    PubMed  CAS  Google Scholar 

  • Wilkins WE, Regen EM (1934) The influence of roentgen rays on the growth and phosphatase activity of bone. Radiology 22: 674–677

    Google Scholar 

  • Wilson CW (1950) Dosage of high voltage radiation within bone and its possible significance for radiation therapy. Br J Radiol 23: 92–100

    PubMed  CAS  Google Scholar 

  • Wilson CW (1956a) The uptake of 32P by the kneejoint and tibia of six-week-old mice and the effect of x-rays upon it. Variation of uptake with time after a dose of 2000 r of 200 kV x-rays. Br J Radiol 29: 86–573

    PubMed  CAS  Google Scholar 

  • Wilson CW (1956b) The effect of x-rays on the uptake of 32P by the knee-joint and tibia of six-week-old mice: relation of depression of uptake to x-ray dose. Br J Radiol 29: 571–573

    PubMed  CAS  Google Scholar 

  • Wilson CW (1957) The effects of x-rays on the uptake of 32P by the knee joint and tibia of six-week-old mice. A comparison of the effects produced by equal doses of 200 kV and 2 MeV x-rays. Br J Radiol 30: 92–94

    PubMed  CAS  Google Scholar 

  • Wilson CW (1958) The effect of x-rays upon the uptake of 32P by the knee joint of the mouse. Relation between the depression of 32P uptake and the age of animal. Br J Radiol 31: 384–386

    PubMed  CAS  Google Scholar 

  • Wilson CW (1959) Effect of x-rays on uptake of 32P by the mouse knee joint when the x-ray dose is given in two carefully spaced fractions. Br J Radiol 32: 547–551

    PubMed  CAS  Google Scholar 

  • Wilson CW (1960) Effect of x-rays on the uptake of phosphorus 32 by the mouse knee joint. Dependence upon the spacing interval of the effect produced by two spaced equal dose fractions. Br J Radiol 33: 636–639

    PubMed  CAS  Google Scholar 

  • Wilson CW (1961) Effect of spaced x-ray dose fractions on 32P uptake by the mouse knee joint. Dependence upon size of fractions and their spacing intervals. Br J Radiol 34; 454–457

    PubMed  CAS  Google Scholar 

  • Woodard HQ (1957) Some effects of x-rays on bone. Clin Orthop 9: 118–130

    PubMed  CAS  Google Scholar 

  • Woodard HQ, Laughlin JS (1957) The effect of x-rays of different qualities on the alkaline phosphatase activity of living mouse bone. II. Effects of 22.5 Mevp x-rays. Radiat Res 7: 236–252

    PubMed  CAS  Google Scholar 

  • Woodard HQ, Spiers FW (1953) The effect of x-rays of different qualities on the alkaline phosphatase of living mouse bone. Br J Radiol 26: 38–46

    PubMed  CAS  Google Scholar 

  • Wozney JM, Rosen V, Celeste AJ et al. (1988) Novel regulators of bone formation: molecular clones and activities. Science 242: 1528–1534

    PubMed  CAS  Google Scholar 

  • Wronski TJ, Smith JM, Jee WSS (1980) The microdistribution and retention of injected 239Pu on trabecular bone surfaces of the beagle: implications for the induction of osteosarcoma. Radiat Res 83: 74–89

    PubMed  CAS  Google Scholar 

  • Wronski TJ, Smith JM, Jee WSS (1981) Variations in mineral apposition rate of trabecular bone within the beagle skeleton. Calcif Tissue Int 33: 583–586

    PubMed  CAS  Google Scholar 

  • Wurster CF, Krespi YP, Curtis AW (1982) Osteoradionecrosis of the temporal bone. Otolaryngol Head Neck Surg 90: 126–129

    PubMed  CAS  Google Scholar 

  • Yeager VL, Chiemchanya S, Chaiseri P (1975) Changes in size of lacunae during the life of osteocytes in osteons of compact bone. J Gerontol 30: 9–14

    PubMed  CAS  Google Scholar 

  • Zinkernagel R, Riede UN, Schenk RK (1972) Ultrastrukturelle Untersuchungen der juxtaepiphysären Kapillaren nach Perfusionsfixation. Experientia 28: 1205–1206

    PubMed  CAS  Google Scholar 

  • Zollinger HU (1960) Radio-Histologie und Radio- Histopathologie In: Roulet F (ed) Strahlung und Wetter. Springer, Berlin Göttingen Heidelberg (Handbuch der allgemeinen Pathologie, vol 10/1, pp 127–287)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Luz, A., Gössner, W., Heuck, F. (1991). Bone. In: Scherer, E., Streffer, C., Trott, KR. (eds) Radiopathology of Organs and Tissues. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83416-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83416-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83418-9

  • Online ISBN: 978-3-642-83416-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics