Skip to main content

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

The aim of this article is to update earlier reviews and monographs on this subject to take account of the enormous increase in our knowledge that has occurred during the last 20 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe M, Langendorff H (1964) Untersuchungen über einen biologischen Strahlenschutz. 60. Mitt. Das Verhalten des Hodengewebes von Mäusen bei einmaliger oder wiederholter lokaler Bestrahlung unter Serotonin- Schutz. Strahlentherapie 125: 358–370

    PubMed  CAS  Google Scholar 

  • Adler ED (1977) Stage-sensitivity and dose-response study after gamma-irradiation of mouse primary spermatocytes. Int J Radiat Biol 31: 79–85

    CAS  Google Scholar 

  • Alpen EL, Powers-Risius P (1981) The relative biological effect of high-Z, high-LET charged particles for sperma- togonial killing. Radiat Res 88: 132–143

    PubMed  CAS  Google Scholar 

  • Amelar RD, Dubin L, Hotchkiss RS (1971) Restoration of fertility following unilateral orchiectomy and radiation therapy for testicular tumors. J Urol 106: 714–718

    PubMed  CAS  Google Scholar 

  • Andersen AC, Nelson VG, Simpson ME (1972) Fractionated x-radiation damage to developing monkey ovaries. J Med Primatol I: 318–325

    Google Scholar 

  • Andersen AC, Hendrickx AG, Momeni MH (1977) Fractionated x-radiation damage to developing ovaries in the bonnet monkey (Macaca radiata). Radiat Res 71: 398–405

    PubMed  CAS  Google Scholar 

  • Asbjornsen G, Moline K, Klepp O, Aakvaaz A (1976) Testicular function after radiotherapy to inverted “Y” field for malignant lymphoma. Scand J Haematol 17: 96

    PubMed  CAS  Google Scholar 

  • Ash P (1980) The influence of radiation on fertility in man. Br J Radiol 53: 271–278

    PubMed  CAS  Google Scholar 

  • Ashraf M, Anwar M, Siddiqui QH (1974) Histopathological effects of gamma radiation on testes of the spotted bollworm of cotton, Eariax insulana (Lepidoptera: Arctüdae). Radiat Res 37: 80–87

    Google Scholar 

  • Ayerst RI, Johnsen CG (1959) Dysgerminoma. Report of a case treated by surgery and x-ray therapy and followed by term pregnancy. Obstet Gynecol 14: 685–687

    PubMed  CAS  Google Scholar 

  • Bager S (1982) Radiation sensitivity of small oocytes in immature mice. Effect of gonadotropin treatment. Correspondence. Radiat Res 89: 420–423

    PubMed  CAS  Google Scholar 

  • Bain J, Keene J (1975) Further evidence for inhibin: change in serum luteinizing hormone and follicle stimulating hormone levels after irradiation of rat testes. J Endocrinol 66: 279–280

    PubMed  CAS  Google Scholar 

  • Baker TG, Neal P (1977) Action of ionizing radiations of the mammalian ovary. In: Zuckerman L, Weir BJ (eds) The ovary, vol III. Academic, New York, pp 1–58

    Google Scholar 

  • Barber HRK (1981) The effect of cancer and its therapy upon fertility. Int J Fertil 26: 250–259

    PubMed  CAS  Google Scholar 

  • Barrett A, Nicholls J, Gibson B (1987) Late effects of total body irradiation. Radiother Oncol 9: 131–135

    PubMed  CAS  Google Scholar 

  • Batchelor AL, Mole RH, Williamson FS (1964) The effect on the testis of the mouse of neutrons of different energies. In: Biological effects of neutrons and proton irradiations, vol II, IAEA, Vienna, pp 303–310 (STI/ PUB 807)

    Google Scholar 

  • Beaumont HM (1969) Effect of hormonal environment on the radiosensitivity of oocytes. In: Sikov MR, Mahlum DD (eds) Radiation biology of the fetal and juvenile mammal. USAEC Division of Technical Information Service, Oak Ridge

    Google Scholar 

  • Beninson D, Placer A, van der Eist E (1969) Estudio de un caso de irradiation humana accidental. In: Handling of radiation accidents. Pro Symp Vienna Int Atomic Energy Agency, pp 415–429

    Google Scholar 

  • Berliner DL, Ellis LC (1965) The effects of ionizing radiations on endocrine cells. IV. Increase production of 17A-, 20A-dihydroxyprogesterone in rat testes after irradiation. Radiat Res 24: 368–373

    PubMed  CAS  Google Scholar 

  • Berliner DL, Ellis LC, Taylor GN (1964) The effects of ionizing radiations on endocrine cells. II. Restoration of androgen production with a reduced nicotinamide adenine dinucleotide phosphate-generating system after irradiation of rat testes. Radiat Res 22: 345–356

    PubMed  CAS  Google Scholar 

  • Berthelsen JG (1984) Sperm counts and serum follicle- stimulating hormone levels before and after radiotherapy and chemotherapy in man with testicular germ cell cancer. Fertil Steril 41: 281–286

    PubMed  CAS  Google Scholar 

  • Berthelsen JG, Skakkebaek NE (1983) Gonadal function in men with testis cancer. Fertil Steril 39: 68–75

    PubMed  CAS  Google Scholar 

  • Bhartiya HC (1986) Inhibition of reduction in the testicular weight by WR-2721 in relation to the body weight after whole-body gamma irradiation. Strahlentherapie 162: 68–70

    CAS  Google Scholar 

  • Bhartiya HC, Pareek BP (1984) Effects of 5-2 (3- aminopropylamino) ethyl-phosphorothioic acid (WR 2721) on the sensitivity of mouse spermatogonia A to radiation. Acta Radiol Ther 23: 65–68

    Google Scholar 

  • Bhatia AL, Srivastava PN (1982a) Tritium toxicity in mouse testis: effect of continuous exposure during pre- and postnatal development. Strahlentherapie 158: 752–755

    PubMed  CAS  Google Scholar 

  • Bhatia AL, Saharan BR, Mathur KM (1982b) Radioresponse of spermatogenic cell population and tubular diameter in mice testes to external 60 Co gamma rays. Radiobiol Radiother 23: 699–704

    CAS  Google Scholar 

  • Bianchi M, Quintiliani M, Baarli J, Sullivan AH (1969) Survival of mouse type-B spermatogonia for the study of the biological effectiveness of very high-energy neutrons. Int J Radiat Biol 15: 185–189

    CAS  Google Scholar 

  • Bianchi M, Ebert M, Keene JP, Quintiliani M (1972) Survival of type A and B spermatogonia in the mouse testis after exposure to high dose rates of electrons. Int J Radiat Biol 22: 191–195

    CAS  Google Scholar 

  • Bianchi M, Baarli J, Sullivan AH, Di Paola M, Quintiliani M (1974) RBE values of 400 MeV and 14 MeV neutrons using various biological effects. In: Biological effects of neutrons irradiation. IAEA 179/6, Vienna, pp 349–357

    Google Scholar 

  • Bianchi M, Delic JI, Hurtado-de-Catalfo G, Hendry JH (1985) Strain differences in the radiosensitivity of mouse spermatogonia. Int J Radiat Biol 48: 579–588

    CAS  Google Scholar 

  • Bieler EU, Schnabel T, Knobel J (1976a) The influence of pelvic irradiation on the formation and function of the human corpus luteum. Int J Radiat Biol 30: 283–285

    CAS  Google Scholar 

  • Bieler EU, Schnabel T, Knobel J (1976b) Persisting cyclic ovarian activity in cervical cancer after surgical transposition of the ovaries and pelvic irradiation. Br J Radiol 49: 875

    PubMed  CAS  Google Scholar 

  • Binhammer RT (1967) Effect of increased endogenous gonadotrophin on testes or irradiated immature and mature rats. Radiat Res 30: 676

    PubMed  CAS  Google Scholar 

  • Birke G, Franksson C, Hultborn KA, Plantin LO (1956) The effect of roentgen irradiation on the steroid production of the testicles. Acta Chir Scand 110: 469–476

    PubMed  CAS  Google Scholar 

  • Blankenstein MA, Mulder E, Broerse JJ, van der Molen HJ (1981) Oestrogen receptors in rat mammary tissue and plasma concentrations of prolactin during mammary carcinogenesis induced by oestrogen and ionizing radiation. J Endocrinol 88: 233–241

    PubMed  CAS  Google Scholar 

  • Blot WJ, Sawada H (1972) Fertility among female survivors of the atomic bombs of Hiroshima and Nagasaki. Am J Hum Genet 24: 613–622

    PubMed  CAS  Google Scholar 

  • Blot WJ, Shimizu Y, Kato H, Miller RW (1975) Frequency of marriage and life birth among survivors prenatally exposed to the atomic bomb. Am J Epidemiol 102: 128

    PubMed  CAS  Google Scholar 

  • Börner W, Neff V, Ricmann H, Wachsmann F (1956) Die Wirkung von 180 kV-Röntgenstrahlen und 6-MeV- Elektronen auf das Hodengewebe der Ratte. Strahlentherapie 101: 101–109

    PubMed  Google Scholar 

  • Brady LW, Philips TL, Wasserman TH (1981) The potential for radiation sensitizers and radiation protectors combined with radiation therapy in gynecologic cancer. Cancer 48: 650–657

    PubMed  CAS  Google Scholar 

  • Brauner R, Czernichow P, Cramer P, Schaison G, Rappaport R (1983) Leydig-cell function in children after direct testicular irradiation for acute lymphoblastic leukemia. N Engl J Med 309: 25–28

    PubMed  CAS  Google Scholar 

  • Brauner R, Caltabiano P, Rappaport R, Leverger G, Sehaison G (1988) Leydig cell insufficiency after testicular irradiation for acute lymphoblastic leukemia. Horm Res 30: 111–114

    PubMed  CAS  Google Scholar 

  • Breckwoldt M, Siebers JW, Müller U (1981) Die primäre Ovarialinsuffizienz. Gynäkologe 14: 131–144

    PubMed  CAS  Google Scholar 

  • Brent RL (1977) Radiations and other physical agents. In: Wilson JG, Fraser C (eds) Handbook of teratology, vol I. Plenum, New York, pp 153–223

    Google Scholar 

  • Brooks AL, Diel JH, McClellan RO (1979) The influence of testicular microanatomy on the potential genetic dose internally deposited 239Pu citrate in Chinese hamster, mouse and man. Radiat Res 77: 292–302

    PubMed  CAS  Google Scholar 

  • Bruce WR, Furrer R, Wyrobek AJ (1974) Abnormalities in the shape of murine sperm after acute testicular x- irradiation. Mutat Res 23: 381–386

    PubMed  CAS  Google Scholar 

  • Cahill DF, Yuile C (1970) Tritium: some effects of continuous exposure in “utero” on mammalian development. Radiat Res 44: 727

    PubMed  CAS  Google Scholar 

  • Cahill DF, Wright JF, Godbold FH (1975) Neoplastic and lifespan effects of chronic exposure to tritium II. Rats exposed in utero. J Natl Cancer Inst 55: 1165–1169

    PubMed  CAS  Google Scholar 

  • Carlsson WD, Gassner FX (eds) (1964) Effects of radiation on the reproductive system. Pergamon, Oxford

    Google Scholar 

  • Carr TEF, Nolan J (1979) Testis mass loss in the mouse induced by tritiated thymidine, tritiated water, and 60Co gamma irradiation. Health Phys 36: 135–145

    PubMed  CAS  Google Scholar 

  • Carrascosa A, Audi L, Ortega JJ, Javier C, Toran N (1984) Hypothalamo-hypophyseal-testicular function in prepubertal boys with acute lymphoblastic leukaemia following chemotherapy and testicular radiotherapy. Acta Paediatr Scand 73: 364–371

    PubMed  CAS  Google Scholar 

  • Casarett GW (1970) Pathological changes after protracted exposure to low dose radiation. In: Fry RJM, Grahn D. Griem ML, Rust JH (eds) Late effects of radiation. Taylor & Francis. London, pp 85–100

    Google Scholar 

  • Casarett GW (1980) Radiation histopathology, vol II. CRC, Boca Raton, pp 75–94

    Google Scholar 

  • Cattanach BM (1974) Spermatogonial single and fractionated x-ray dosis, as assessed by length of sterile period. Mutat Res 25: 53–62

    PubMed  CAS  Google Scholar 

  • Cattanach BM, Moseley H (1974) Sterile period, translocation and specific locus mutation in the mouse following fractionated x-ray treatments with different fractionation intervals. Mutat Res 25: 63–72

    PubMed  CAS  Google Scholar 

  • Chapman RM (1982) Effects of cytotoxic agents on sexuality and gonadal function. Semin Oncol 9: 84

    PubMed  CAS  Google Scholar 

  • Christiansen JM, Keyes PL, Armstrong DT (1970) x- irradiation of the rat ovary luteinized by exogenous gonadotropins: influence on steroidogenesis. Biol Re- prod 3: 135–139

    CAS  Google Scholar 

  • Christov K, Raichev R (1973) Proliferative and neoplastic changes in the ovaries of hamsters treated with 131- iodine and methylthiouracil. Neoplasma 20: 511–516

    PubMed  CAS  Google Scholar 

  • Cianci S, Marotta N, Nigro SC (1968) Effecti delle radiazioni ionizzanti sull’ovaio umano. Clin Ginecol 10: 1082–1098

    Google Scholar 

  • Clayton PE, Shalet SM, Price DA (1988) Gonadal function after chemotherapy and irradiation for childhood malignancies. Hormone Res 30: 104–110

    PubMed  CAS  Google Scholar 

  • Clifton DK, Brenner WJ (1983) The effect of testicular x-irradiation on spermatogenesis in man: a comparison with the mouse. J Androl 4: 387–392

    PubMed  CAS  Google Scholar 

  • Clow DJ, Gillette EL (1970) Survival of type A- spermatogonia following x-irradiation. Radiat Res 42: 397–404

    PubMed  CAS  Google Scholar 

  • Clubb B, Carter J (1976) Effects of testicular radiation. Aust Radiol 20: 64–67

    CAS  Google Scholar 

  • Coggle JE, Lambert BE, Peel DM, Davies RW (1977) Negative pion irradiation of the mouse testis. Int J Radiat Biol 32: 397–400

    CAS  Google Scholar 

  • Coniglio JG, Culp FB, Davis J, Ford W, Windier F (1963) The effect of total body x-irradiation on fatty acids of testes of rats. Radiat Res 20: 372–382

    PubMed  CAS  Google Scholar 

  • Cottier H (1961) Strahlenbedingte Lebensverkürzung. Pathologische Anatomie somatischer Spätwirkungen der ionisierenden Ganzkörperbestrahlung auf den erwachsenen Säugetierorganismus. Springer, Berlin Göttingen Heidelberg

    Google Scholar 

  • Covelli V, di Majo V, Bassani B, Metalli P, Silini G (1982) Radiation induced tumors in transplanted ovaries. Radiat Res 90: 173–186

    PubMed  CAS  Google Scholar 

  • Crone M (1970) Radiation stimulated incorporation of 3H-thymidine into diplotene oocytes of the guinea-pig. Nature 228: 460

    PubMed  CAS  Google Scholar 

  • Cunningham GR, Huckins C (1978) Serum FSH, LH and testosterone in 60Co gamma-irradiated male rats. Radiat Res 76: 331–338

    PubMed  CAS  Google Scholar 

  • Czygan PJ, Maruhn G (1972) Einfluβ ablativer gynäkologischer Maßnahmen auf den Serum-Gonadotropingehalt. Arch Gynaekol 212: 176–188

    CAS  Google Scholar 

  • Damewood MD, Grochow LB (1986) Prospects for fertility after chemotherapy or radiation for neoplastic disease. Fertil Steril 45: 443–459

    PubMed  CAS  Google Scholar 

  • Davids JAG (1973) Acute effects of 1 MeV fast neutrons on the haematopoetic tissues, intestinal epithelium and gastric epithelium in mice. In: Duplan JF, Shapiro A (eds) Advances in radiation research. Biology and medicine, vol II. Gordon & Breach, New York, pp 565–576

    Google Scholar 

  • Dedov VI, Norec TA (1982) Die reproduktive und hormonale Hodenfunktion bei Ratten unter den Bedingungen einer inneren Dauerbestrahlung. Radiobiol Radiother 23: 159–166

    CAS  Google Scholar 

  • de Jong FH, Sharpe RM (1977) Gonadotropins, testosterone and spermatogenesis in neonatally irradiated rats: evidence for a role of the Sertoli cell in follicle- stimulating hormone feedback. J Endocrinol 75: 209–219

    PubMed  Google Scholar 

  • Delclos L, Montague ED (1973) Metastasis from breast cancer. In: Fletcher GH (ed) Textbook of radiotherapy. Lea & Febiger, Philadelphia, pp 493–496

    Google Scholar 

  • Delic JI, Bush C, Steel GG (1986a) Influence of timing of cytotoxic drug treatment on the response of murine clonogenic spermatogonia to x-irradiation. Radiother Oncol 7: 341–348

    PubMed  CAS  Google Scholar 

  • Delic JI, Hendry JH, Morris ID, Shalet SM (1986b) Leydig cell function in the pubertal rat following local testicular irradiation. Radiother Oncol 5: 29–37

    PubMed  CAS  Google Scholar 

  • Delic JI, Schlappack OK, Harwood JR, Stanley JA (1987a) Comparative effects of x-irradiation on the testes of adult Sprague-Dawley and Wistar rats. Radiat Res 112: 99–104

    PubMed  CAS  Google Scholar 

  • Delic JI, Schlappack OK, Steel GG (1987b) Effects of dose-rate on the survival of murine spermatogonia following 6()Co irradiation. Radiother Oncol 8: 345–352

    PubMed  CAS  Google Scholar 

  • de Ruiter-Bootsma AL, Davids JA (1981) Survival of spermatogonial stem-cells in the CBA mouse after combined exposure to 1-MeV fission neutrons and hydroxyurea. Radiat Res 85: 38–46

    PubMed  Google Scholar 

  • de Ruiter-Bootsma AL, Kramer MF, Rooij DG, Davids IAG (1974) Survival of spermatogonial stem cell in the mouse after exposure to 1 MeV fast neutrons. In: Biological effects of neutron irradiation. IAEA, Vienna, pp 325–334

    Google Scholar 

  • de Ruiter-Bootsma AL, Kramer MF, Rooij DG (1976) Response of stem cells in the mouse testis to fission neutrons of 1 MeV energy and 300 kV x-rays. Methodology, dose-response studies, relative biological effectiveness. Radiat Res 67: 56–68

    PubMed  Google Scholar 

  • de Ruiter-Bootsma AL, Kramer MF, Rooij DG (1977) Survival of spermatogonial stem cells in the mouse after split-dose irradiation with fission neutrons of 1 MeV mean energy or 300 kV x-rays. Radiat Res 71: 579–592

    PubMed  Google Scholar 

  • Deschner EE, Rugh R, Grupp E (1969) A cytological and cytochemical study of x-irradiated human testes. Milit Med 125: 447–462

    Google Scholar 

  • Dierickx P, Verhoeven G (1980) Effect of different methods of germinal cell destruction on rat testis. J Reprod Fertil 59: 5–9

    PubMed  CAS  Google Scholar 

  • Diethelm L, Lorenz W (1964) Über Unterschiede des strahlengeschädigten Rattenhodens. Eine histologische und zytologische Studie am 2. und 8. Tag nach 600 R-Röntgen-Ganzkörperbestrahlung und zehntägiger Tumorbestrahlung mit täglich 3 R. Strahlentherapie 123: 207–225

    PubMed  CAS  Google Scholar 

  • Diez-Falusy E, Notter G, Edsmyr F, Westmann A (1959) Estrogen excretions in breast cancer patients before and after ovarian irradiation and oophorectomy. J Clin Endocrinol Metab 19: 1230

    Google Scholar 

  • di Paola M, Caffarelli V, Coppola M, Porro F, Quintiliani M (1980) Biological responses to various neutron energies from 1 to 600 MeV. I. Testes weight loss in mice. Radiaf Res 84: 444–452

    Google Scholar 

  • Dobson RL, Cooper MF (1974) Tritium toxicity: effects of low-level 3HOH exposure on developing female germ cells in the mouse. Radiat Res 58: 91–100

    PubMed  CAS  Google Scholar 

  • Dobson RL, Felton JS (1983) Female germ cell loss from radiation and chemical exposures. Am J Ind Medic 4: 175–190

    CAS  Google Scholar 

  • Dobson RL, Kwan TC (1974) Low-level exposure to tritium and gamma-irradiation compared in mouse oocytes. Radiat Res 59: 62

    Google Scholar 

  • Dobson RL, Kwan TC (1976) The RBE of tritium radiation measures in mouse oocytes: increase at low exposure levels. Radiat Res 66: 615–625

    PubMed  CAS  Google Scholar 

  • Dobson RL, Kwan TC (1977) The tritium RBE at low-level exposure - variation with dose, dose rate, and exposure duration. Curr Top Radiat Res Q 12: 44–62

    Google Scholar 

  • Doll R, Smith PG (1968) The long-term effects of x- irradiation in patients treated for metropathia haemor- rhagica. Br J Radiat 41: 362–368

    CAS  Google Scholar 

  • Driancourt MA, Blanc MR, Mariana JC (1983) Hormonal levels after ovarian x-irradiation of ewes. Reprod Nutr Dev 23: 775–781

    PubMed  CAS  Google Scholar 

  • Dym M, Clermont Y (1979) Role of spermatogonia in the repair of the seminiferous epithelium following x- irradiation of the rat testis. Am J Anat 127: 265–282

    Google Scholar 

  • Ellis LD, Berliner DL (1967) The effects of ionizing radiations on endocrine cells. VI. Afterloadings in androgen biosynthesis by canine testicular tissue after the internal deposition of some radionuclides. Radiat Res 32: 520–537

    PubMed  CAS  Google Scholar 

  • Erickson BH (1976) Effect of 60Co gamma-radiation on the stem and differentiating spermatogonia of the post- pubertal rat. Radiat Res 68: 433–448

    PubMed  CAS  Google Scholar 

  • Erickson BH (1978) Effect of continuous gamma-radiation of the stem and differentiating spermatogonia of the adult rat. Mutat Res 52: 117–128

    PubMed  CAS  Google Scholar 

  • Erickson BH (1981) Survival and renewal of murine stem spermatogonia following 60Co gamma-radiation. Radiat Res 86: 34–51

    PubMed  CAS  Google Scholar 

  • Erickson BH. Blend MJ (1976) Response of the Sertoli cell and stem cell to Co60 radiation (dose and dose rate) in testes of immnature rats. Biol Reprod 14: 641–650

    PubMed  CAS  Google Scholar 

  • Erickson BH, Hall GG (1983) Comparison of stem- spermatogonial renewal and mitotic activity in the irradiated mouse and rat. Mutat Res 108: 317–335

    PubMed  CAS  Google Scholar 

  • Erickson BH, Martin PG (1972) Effect of dose-rate (gamma-radiation) on the mitotically-active and differentiating germ cell of the prenatal male rat. Int J Radiat Biol 22: 517–524

    CAS  Google Scholar 

  • Erickson BH, Martin PG (1973) Influence of age on the response of rat stem spermatogonia to gamma-radiation. Biol Reprod 8: 607–612

    PubMed  CAS  Google Scholar 

  • Erickson BH, Martin PG (1976) Effects of continuous prenatal radiation on the pig and rat. In: Biological and environmental effects of low-levels radiation, vol. I. Proc Symp Chicago, 3–7 Nov 1975, Vienna 1, pp 111–117

    Google Scholar 

  • Erickson BH, Reynolds RA (1978) Oogenesis, follicular development and reproductive performance in the prenatally irradiated bovine. In: Late biological effects of ionizing radiation, vol II. IAEA, Vienna, Symposium 13–17 March

    Google Scholar 

  • Erickson BH, Reynolds RA, Brooks FT (1972) Differentiation and radioresponse (dose and dose rate) of the primitive germ cell of the bovine testis. Radiat Res 50: 388–400

    PubMed  CAS  Google Scholar 

  • Erickson BH, Reynolds RA, Murphree RL (1976) Late effects of 60Co gamma-radiation of the bovine oocyte as reflected by oocyte survival, follicular development, and reproductive performance. Radiat Res 68: 132–137

    PubMed  CAS  Google Scholar 

  • Etoh H, Hyodo-Taguchi Y (1983) Effects of tritiated water on germ cells in medaka embryos. Radiat Res 93: 332–339

    PubMed  CAS  Google Scholar 

  • Fabrikant JI (1972) Cell population kinetics in the seminiferous epithelium under low dose irradiation. AJR 114: 792–802

    CAS  Google Scholar 

  • Faizi-Gorn R (1990) Critical sensitivity periods in embryofetal germ cells. Radiat Environ Biophys (in press)

    Google Scholar 

  • Fakunding JL, Tindall DJ, Dedman JR, Mesa CR, Means AR (1976) Biochemical actions of follicle stimulating hormone in the Sertoli cell of the rat testis. Endocrinology 98: 392–402

    PubMed  CAS  Google Scholar 

  • Feinendegen LE, Cronkite EP, Bond VP (1980) Radiation problems in fusion energy production. Radiat Environ Biophys 18: 157

    PubMed  CAS  Google Scholar 

  • Feingold SM, Hahn W (1972) Postconception development of rat ova following x-ray induced superovulation. Radiat Res 51: 110–120

    PubMed  CAS  Google Scholar 

  • Fleck H, Stahl F, Mau S (1981) Studies on the interruption of testicular testosterone production through testicular irradiation in prostate cancer patients. Z Urol Nephrol 74: 443–446

    PubMed  CAS  Google Scholar 

  • Fossa SD, Klepp O, Moine K, Aakvaag A (1982) Testicular function after unilateral orchiectomy for cancer and before further treatment. Int J Androl 5: 179–184

    PubMed  CAS  Google Scholar 

  • Fossà SD, Almaas B, Jetne V, Bjerkedal T (1986) Paternity after irradiation for testicular cancer. Acta Radiol Oncol 25: 33–36

    PubMed  Google Scholar 

  • Fraass, BA, Kinsella TJ, Harrington FS, Glatstein E (1985) Peripheral dose to the testes: the design and clinical use of a practical and effective gonadal shield. Int J Radiat Oncol Biol Phys 11: 609–616

    PubMed  CAS  Google Scholar 

  • Francis O, Stevens RD (1965) Pregnancy after primary irradiation for carcinoma of cervix. Br Med J 2: 342–343

    PubMed  CAS  Google Scholar 

  • Freund I, Zenzes MT, Müller RP, Pötter R, Knuth UA, Nieschlag E (1987) Testicular function in eight patients with seminoma after unilateral orchidectomy and radiotherapy. Int J Androl 10: 447–456

    PubMed  CAS  Google Scholar 

  • Freund M, Borelli FJ (1965) The effects of x-irradiation on male fertility in the guinea pig: semen production after x-irradiation of the testis, of the body or of the head. Radiat Res 24: 67–80

    PubMed  CAS  Google Scholar 

  • Fritz-Niggli H (1972) Strahlenbedingte Entwicklungsstörungen. In: Hug O, Zuppinger A (ed) Strahlenbiologie. Handbuch der medizinischen Radiologie, Vol II/3, pp 235–297. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Fritz-Niggli H (1973) Strahlenempfindlichkeit der Gonaden. In: Braun H, Heuck F, Ladner HA, Messerschmidt O, Musshoff K, Streffer C (eds) Strahlenempfindlichkeit von Organen und Organsystemen der Säugetiere und des Menschen. Thieme, Stuttgart, pp 107–122

    Google Scholar 

  • Fritz K, Weissbach L (1985) Sperm parameters and ejaculation before and after operative treatment of patients with germ-cell testicular cancer. Fertil Steril 43: 451–454

    PubMed  CAS  Google Scholar 

  • Fuchs G, Hofbauer J (1969) Gonadendosen und genetische Strahlenbelastung in der Telekobalttherapie. Strahlentherapie 138: 178–180

    PubMed  CAS  Google Scholar 

  • Gaetini A, Resegotti A, Urgesi A, Rossi G, Levis A, de Simone M, Monetti U (1987) Lateral high abdominal ovariopexy. An effective surgical method for gonadal protection in young women during radiation therapy for Hodgkin’s disease. Haematologia (Budap) 72: 186

    CAS  Google Scholar 

  • Gagnon C, Axelrod J, Musto N, Dym M, Bardin CW (1979) Protein carboxyl-methylation in rat testes: a study of inherited and x-ray-induced seminiferous tubule failure. Endocrinology 105: 1440–1445

    PubMed  CAS  Google Scholar 

  • Gasinska A (1985) Mouse testis weight loss and survival of differentiated spermatogonia following irradiation with 250 kV x-rays and 5.5 MeV fast neutrons. Neoplasma 32: 443–450

    PubMed  CAS  Google Scholar 

  • Gasinska A, de Ruiter-Bootsma A, Davids J AG, Folkard M, Fowler JF (1987) Survival of mouse type B spermatogonia for the study of the biological effectiveness of 1 MeV, 2,3 MeV and 5,6 MeV fast neutrons. Int J Radiat Biol 52: 237–244

    CAS  Google Scholar 

  • Geller FC (1925) Über die Wirkung schwacher Eierstock- bestrahlung auf Grund tierexperimenteller Untersuchungen. Strahlentherapie 19: 22–61

    Google Scholar 

  • Geraci JP, Jackson KL, Thrower PD, Fox MS (1975) An estimate of the patient risk in cyclotron neutron radiotherapy using mouse testes as a biological test system. Health Phys 29: 729–737

    PubMed  CAS  Google Scholar 

  • Geraci JP, Jackson KL, Christensen GM, Thrower PD, Weyer BJ (1977) Mouse testes as a biological test system for intercomparison of fast neutron therapy beams. Radiat Res 71: 377–386

    PubMed  CAS  Google Scholar 

  • Geraci JP, Decello JF, Eanmaa J, Jackson KL, Thrower PD, Mariano MS (1980) Comparative effects of negative pions, neutrons and photons on testes weight loss and spermatogenic stem cell survival in mice. Radiat Res 82: 579–587

    PubMed  CAS  Google Scholar 

  • Gibbons AFE, Chang MC (1973a) Indirect effects of x- irradiation on embryonic development: irradiation of the exteriorized rat uterus. Biol Reprod 9: 133–141

    PubMed  CAS  Google Scholar 

  • Gibbons AFE, Chang MC (1973b) The effects of x- irradiation of the rat ovary on implantation and embryonic development. Biol Reprod 9: 343–349

    PubMed  CAS  Google Scholar 

  • Glucksmann A (1947) The effects of radiation on reproductive organs. Br J Radiol 1: 101–109

    Google Scholar 

  • Goyal PK, Dev PK (1982) Weight loss of mouse testes after gamma irradiation in utero and its modification by MPG (2-mercaptopropionglycine). Radiobiol Radiother 23: 283–286

    CAS  Google Scholar 

  • Gragg RL, Humphrey RM, Meyn RE (1976) The response of Chinese hamster ovary cells to fast neutron radiotherapy beams. I. Relative biological effectiveness and oxygen enhancement ratio. Radiat Res 65: 313–334

    Google Scholar 

  • Green AD, Bushong SC (1971) Gonadal dose in male radiotherapy patients. Radiology 98: 661–663

    PubMed  CAS  Google Scholar 

  • Green AD, Howells GR, Humphreys ER, Vennart J (1975) Localisations of plutonium in mouse testes. Nature 255: 77

    PubMed  CAS  Google Scholar 

  • Green D, Howells G, Vennart J, Watts R (1977) The distribution of plutonium in the mouse ovary. Int J Radiat Isotop 28: 487–501

    Google Scholar 

  • Greiner R (1982) Die Erholung der Spermatogenese nach fraktionierter, niedrig dosierter Bestrahlung per männlichen Gonaden. Strahlentherapie 158: 342–355

    PubMed  CAS  Google Scholar 

  • Greiner R (1983) Tumortherapien, Fertilität und Sexualität. Schweiz Rundsch Med Prax 72: 1293–1298

    PubMed  CAS  Google Scholar 

  • Greiner R (1985) Die Hodenfunktion nach Einwirkung ionisierender Strahlen. In: Ladner H-A, Reiners C, Börner W, Schütz J (eds) 25 Jahre medizinischer Strahlenschutz. Thieme, Stuttgart, pp 114–121

    Google Scholar 

  • Greiner R, Meyer A (1977) Reversible und irreversible Azoospermie nach Bestrahlung des malignen Hodentumors. Strahlentherapie 153: 257–262

    PubMed  CAS  Google Scholar 

  • Griffiths TD (1970) x-ray response of Chinese hamster ovary cells during the latter part of G2. Biophys J 28: 497–501

    Google Scholar 

  • Gritz ER, Wellisch DK, Wang H-J, Siau J, Landsverk JA, Cosgrove MD (1989) Long-term effects of testicular cancer on sexual functioning in married couples. Cancer 64: 1560–1567

    PubMed  CAS  Google Scholar 

  • Grönroos M, Kauppila O, Pulkikinen M, Turunen S, Salmi T, Raekallio J (1981) Pituitary-ovarian hormones after low dose endometrial afterloading irradiation. Int J Gynecol Obstet 19: 375–380

    Google Scholar 

  • Grönroos M, Klemi P, Piiroinen O, Erkkola R, Nikkanen V, Routsalainen P (1982) Ovarian function during and after curative intracavitary high-dose-rate irradiation: steroidal output and morphology. Eur J Obstet Gynecol Reprod Biol 14: 13–21

    PubMed  Google Scholar 

  • Guglielmi R, Calzavara F, Pizzi BG (1980) Ovarian function after pelvic lymph node irradiation in patients with Hodgkin’s disease submitted to oophoropexy during laparotomy. Eur J Gynecol Oncol 41: 99–107

    Google Scholar 

  • Gupta GS, Bawa SR (1971) Phosphatases in testes and epididymides of albino rats after partial body irradiation. J Reprod Fertil 27: 451–454

    PubMed  CAS  Google Scholar 

  • Gupta GS, Bawa SR (1975) Radiation effects on testes VI. 5-Nucleotidase and adenosine triphosphatase following partial body gamma irradiation. Radiobiol Radiother 2: 221–234

    Google Scholar 

  • Gupta GS, Bawa SR (1978a) Radiation effects on testes XIII. Studies on isocitrate dehydrogenases following partial-body gamma irradiation. Radiat Res 73: 476–489

    PubMed  CAS  Google Scholar 

  • Gupta GS, Bawa SR (1978b) Radiation effects on testes. XIV. Studies on glucose 6-phosphatase dehydrogenase following partial-body gamma irradiation. Radiat Res 73: 490–501

    PubMed  CAS  Google Scholar 

  • Gupta GS, Bawa SR (1979) Radiation effects on testes. Strahlentherapie 155: 287–292

    PubMed  CAS  Google Scholar 

  • Haas RJ, Schreml W, Fliedner TM, Calvo W (1973) The effect of tritiated water on the development of the rat oocyte after maternal infusion during the pregnancy. Int J Radiat Biol 23: 603

    CAS  Google Scholar 

  • Hacker U, Schumann J, Göhde W (1980) Effects of acute gamma-irradiation on spermatogenesis as revealed by flow cytometry. Acta Radiol Oncol 19: 361

    PubMed  CAS  Google Scholar 

  • Hacker U, Schumann J, Göhde W, Müller K (1981) Mammalian spermatogenesis as biologic dosimeter for radiation. Acta Radiol Oncol 20: 279–282

    PubMed  CAS  Google Scholar 

  • Hacker U, Schumann J, Göhde W (1982) Mammalian spermatogenesis as a new system for biologic dosimeter of ionizing irradiation. Acta Radiol Oncol 21: 349

    PubMed  CAS  Google Scholar 

  • Hahn EW, Feingold SM (1973) Unilateral reduction of ovulations following selective ovarian x-irradiation. Endocrinology 92: 1447–1450

    PubMed  CAS  Google Scholar 

  • Hahn EW, Ward WF (1971) Changes in ovarian intravascu- lar compartment prior to superovulation in x-irradiated rats. Radiat Res 46: 192–198

    PubMed  CAS  Google Scholar 

  • Hahn EW, Feingold SM, Nisce L (1976) Aspermia and recovery of spermatogenesis in cancer patients following incidental gonadal irradiation during treatment: a progress report. Radiology 119: 223–225

    PubMed  CAS  Google Scholar 

  • Hahn EW, Feingold SM, Simpson L, Batata M (1982) Recovery from aspermia induced by low-dose radiation in seminoma patients. Cancer 50: 337–340

    PubMed  CAS  Google Scholar 

  • Halawa B, Wawrzkiewicz M, Mazurek W, Kasprzak J, Kornafel J (1981) The behaviour of pituitary gonatropins and estrogens in blood serum of gamma-Ra 226 irradiated patients. Radiobiol Radiother 22: 214–218

    CAS  Google Scholar 

  • Hamaguchi S, Egami N (1975) Post-irradiation changes in oocyte populations in the fry of the fish Oryzias latipes. Int J Radiat Biol 28: 279–284

    CAS  Google Scholar 

  • Handelsman DJ (1980) Azoospermia after iodine - 131 treatment for thyroid carcinoma. Br Med J 281: 1527

    PubMed  CAS  Google Scholar 

  • Handelsman DJ, Turtle JR (1983) Testicular damage after radioactive iodine (1–131) therapy for thyroid cancer. Clin Endocrinol 18: 465–472

    CAS  Google Scholar 

  • Hassenstein E, Nüsslin F (1976) Die Gonadenbelastung bei der 60Co-Bestrahlung peripherer, mediastinaler und re- troperitonealer Lymphknotenstationen. Strahlentherapie 152: 427–432

    PubMed  CAS  Google Scholar 

  • Haubrich R, Harms I (1973) Unfruchtbarkeit beim einseitigen Hodenkrebs. Strahlentherapie 146: 94–103

    PubMed  CAS  Google Scholar 

  • Heite HJ (1951) Fertilitätsuntersuchungen bei behandelten Patienten mit Thorium. Med Klin 1297

    Google Scholar 

  • Heller CG, Heller GV, Warner GA, Rowley MJ (1968) Effect of graded doses of ionizing radiation on testicular cytology and sperm count in man. Radiat Res 35: 493–494

    Google Scholar 

  • Henricson B, Nilsson A (1970) Roentgen ray effects on the ovaries of foetal mice. Acta radiol (Ther.) 9: 443–448

    CAS  Google Scholar 

  • Hilscher WM, Trott KR, Hilscher W (1982) Cell progression and radiosensitivity of T1-prospermatogonia in Wistar rats. Int J Radiat Biol 41: 517–524

    CAS  Google Scholar 

  • Himelstein-Braw R, Peters H, Faber M (1977) Influence of irradiation and chemotherapy on the ovaries of children with abdominal tumours. Br J Cancer 36: 269–275

    PubMed  CAS  Google Scholar 

  • Hobson BM, Baker TG (1979) Reproductive capacity of rhesus monkeys following bilateral ovarian x-irradiation. J Reprod Fertil 55: 471–480

    PubMed  CAS  Google Scholar 

  • Hodel K, Rich WM, Austin P, Di Saia PJ (1982) The role of ovarian transposition in conservation of ovarian function in radical hysterectomy followed by pelvic radiation. Gynecol Oncol 13: 195–202

    PubMed  CAS  Google Scholar 

  • Hopkinson CRN, Dulisch B, Gaus G, Hilscher W, Hirschhäuser C (1978) The effects of local testicular irradiation on testicular histology and plasma hormone levels in the male rat. Acta Endocrinol (Copenh) 87: 413–423

    CAS  Google Scholar 

  • Hori Y, Takamori Y, Nisshio K (1970) The effect of x-irradiation on lactic hydrogenase isoenzymes in plasma and in various organs of mice. Radiat Res 43: 143–151

    PubMed  CAS  Google Scholar 

  • Homing SJ, Hoppe RT, Kaplan HS, Rosenberg SA (1981) Female reproductive potential after treatment for hodgkin’s disease. N Engl J Med 304: 1377–1382

    Google Scholar 

  • Hornsey S, Myers R, Warren P (1977) RBE for the two components of weight loss in the mouse testis for fast neutrons relative to x-rays. Int J Radiat Biol 32: 297–301

    CAS  Google Scholar 

  • Hovatta O, Kormano M (1974) Development of the seminiferous tubules following prepuberal whole body x- irradiation. Andrologia 6: 277–285

    PubMed  CAS  Google Scholar 

  • Hsu AC, Folami AO, Bain J, Rance CP (1979) Gonadal function in males treated with cyclophosphamide for nephrotic syndrome. Fertil Steril 31: 173–177

    PubMed  CAS  Google Scholar 

  • Hsu THS, Fabrikant JL (1976) Spermatogonial cell renewal under continuous irradiation of 1, 8 and 45 rads per day. In: Biological and environmental effects of low-level radiation, vol I. IAEA, Vienna, p 157

    Google Scholar 

  • Huckins C (1978a) Spermatogonial intercellular bridges in whole-mounted seminiferous tubules from normal and irradiated rodent testes. Am J Anat 153: 97–122

    PubMed  CAS  Google Scholar 

  • Huckins C (1978b) Behavior of stem cell spermatogonia in the adult rat irradiated testis. Biol Reprod 19: 742–760

    Google Scholar 

  • Huckins C, Oakberg EF (1978) Morphological and quantitative analysis of spermatogonia in mouse testes using whole mounted seminiferous tubules. Anat Res 192: 529–542

    CAS  Google Scholar 

  • Hugue H, Ashraf J (1973) Effect of gamma radiation on the ovaries of desert locust Schistocerca gregaria. Zentralbl Radiol 109: 491

    Google Scholar 

  • Husseinzadeh N, Nahhas WA, Velkley DE, Whitney CW, Mortel R (1984) The preservation of ovarian function in young women undergoing pelvic radiation therapy. Gynecol Oncol 18: 373–379

    PubMed  CAS  Google Scholar 

  • Hwang HN, Feola JM, Beach JL, Maruyma Y (1984) RBE of CF-252 neutrons by mouse testes weight loss. J Radiat Oncol Biol Phys 10: 901–905

    CAS  Google Scholar 

  • Hyodo-Taguchi Y, Egami N (1976) Effect of irradiation on spermatogonia of the fish, Oryzias latipes. Radiat Res 67: 324–331

    PubMed  CAS  Google Scholar 

  • Hyodo-Taguchi Y, Egami N (1977) Damage to sperma- togenic cells in fish kept in tritiated water. Radiat Res 71: 641–652

    PubMed  CAS  Google Scholar 

  • Hyodo-Taguchi Y, Etoh H (1986) Effects of tritiated water on germ cells in medaka. Radiat Res 106: 321–330

    CAS  Google Scholar 

  • ICRP (1969) Radiosensitivity and special distribution of dose. ICRP Publication 14. Pergamon, Oxford

    Google Scholar 

  • ICRP (1979) Limits for intakes of radionuclides by workers. ICRP Publication 30, part I, Pergamon, Oxford

    Google Scholar 

  • ICRP (1980) Biological effects of inhaled radionuclides. ICRP publication 31. Pergamon, Oxford

    Google Scholar 

  • Israel SL (1958) The repudiation of low-dosage irradiation of the ovaries. Am J Obstet Gynecol 76: 443–446

    PubMed  CAS  Google Scholar 

  • Ito M (1966) Histochemical observations of oxidative enzyme in irradiated testis and epididymis. Radiat Res 28: 266

    PubMed  Google Scholar 

  • Ito T, Itagaki G (1963) The effects of 1000R of x-rays on spermatogensis in the mouse. Bull Faculty Agric Hirosa- ki Univ 59–65

    Google Scholar 

  • Ivanov B, Maleeva A (1980) Effect of different doses of gamma-radiation on the concentration of testosterone, follicle-stimulating and luteinizing hormones in the blood plasma of rats. Radiobiology 20: 285–288

    PubMed  CAS  Google Scholar 

  • Ivey JR (1963) Preconception radiation for carcinoma of the cervix. J Obstet Gynecol Br Emp 70: 128–129

    CAS  Google Scholar 

  • Jablon S, Kato H (1971) Sex ratio in offspring of survivors prenatally to the atomic bombs in Hiroshima and Nagasaki. J Epidemiol 93: 253–258

    CAS  Google Scholar 

  • Jacox HW (1939) Recovery following human ovarian irradiation. Radiology 32: 538–545

    Google Scholar 

  • Janson PO, Jansson I, Skryten A, Damber JE, Lindstedt G (1981) Ovarian endocrine function in young women undergoing radiotherayp for carcinoma of the cervix. Gynecol Oncol 11: 218–223

    PubMed  CAS  Google Scholar 

  • Janssens PJ, Wittevrongel C, van Dam J, Goddeeris P, Lauwerijns KM, De Loecker W (1981) Effects of ionizing irradiation on the estradiol and progesterone receptors in rat mammary tumors. Cancer Res 41: 703–707

    PubMed  CAS  Google Scholar 

  • Jansz GF, Pomerantz DK (1984) Fetal irradiation increases androgen production by dispersed Leydig cells in the rat. J Androl 5: 344–350

    PubMed  CAS  Google Scholar 

  • Jarrell J, YoungLai V, Barr R, O’Connoll G, Belbeck L, McMahon A (1986) An analysis of the effects of increas- ing doses of ionizing radiation to the exteriorized rat ovary on follicular development, atresia, and serum gonadotropin level. Am J Obstet Gynecol 154: 306–309

    PubMed  CAS  Google Scholar 

  • Johnson MI, Newman L (1976) Radiation-induced fetal testicular damage in the monkey (Macaca radiata). J Med Primatol 5: 195–199

    PubMed  CAS  Google Scholar 

  • Jones DCL, Krebs JS, Sasmore DP, Mitoma C (1980) Evaluation of neonatal squirrel monkeys receiving tritiated water throughout gestation. Radiat Res 83:592–606

    PubMed  CAS  Google Scholar 

  • Joshi DS, Yick J, Murray D, Meistrich ML (1990) Stage- dependent variation in the radiosensitivity of DNA in developing male germ cells. Radiat Res 121: 274–281

    PubMed  CAS  Google Scholar 

  • Jostes E (1963) Ovar. In: Stender H, Scherer E (eds) Strahlentherapie der Zelle. Thieme, Stuttgart, pp 209–219

    Google Scholar 

  • Jostes E, Scherer E (1961) Beitrag zur Morphologie röntgen- und radiumbestrahlter Mäuseovarien. Strahlentherapie 115: 337–365

    PubMed  CAS  Google Scholar 

  • Jostes E, Scherer E (1967) Beitrag zur Morphologie röntgen- und radiumbestrahlter Mäuseovarien. II. Mitt. Beobachtungen an Follikel-, Theka- und Luteinzeilen. Strahlentherapie 132: 59–78

    PubMed  CAS  Google Scholar 

  • Kalisnik M, Vraspir O, Skrk J et al. (1978) Histological and stereological analysis of some endocrine and lymphatic organs in mice after whole-body-radiation. In: Late biological effects of ionizing radiation, vol II. IAEA, Vienna, pp 137–146

    Google Scholar 

  • Kaplan I (1958) The treatment of female sterility with x-ray therapy directed to the pituitary and ovaries. Am J Obstet Gynecol 76: 447–453

    PubMed  CAS  Google Scholar 

  • Kapoor G, Srivastava PN (1980) J Radiat Res 21: 163

    PubMed  CAS  Google Scholar 

  • Kapoor G, Sharan RN, Srivastava PN (1985) Histopatholo- gical changes in the ovary following acute and chronic low-level tritium exposure to mice in vivo. Int J Radiat Biol 47: 197–204

    CAS  Google Scholar 

  • Kashiwabara T, Tanaka R, Stern C (1971) The effects of radiation (x-, gamma-, neutron rays) on male fertility in the mouse, domestic fowl and drosophila. In: Excerp Med Amsterdam 1973, Proceedings of the VIIth. World Congress 1971 Tokyo and Kyoto, Japan. Elsevier, New York

    Google Scholar 

  • Kellerer AM, Rossi HH (1978) A generalized formulation of dual radiation action. Radiat Res 75: 471

    Google Scholar 

  • Kimler BF, Leeper DB, Schneiderman MH (1981) Radia- tion-induced division delay in Chinese hamster ovary fibroblasts and carcinoma cells: dose effect and ploidy. Radiat Res 85: 270–280

    PubMed  CAS  Google Scholar 

  • Kochar NK, Harrison RG (1971a) The effect of x-rays on the vascularization of the mouse testis. Fertil Steril 22: 53–57

    PubMed  CAS  Google Scholar 

  • Kochar NK, Harrison RG (1971b) The effects of x-rays on lipids, phospholipids and cholesterol of the mouse testis. J Reprod Fertil 27: 159–165

    PubMed  CAS  Google Scholar 

  • Kondratenko VG, Ganzenko LF, Stakanov VA (1978) Cytological and cytochemical analyses of the influence of hormones on the postirradiation changes in testicular sex and incretory cell. Radiobiologiia 18: 347–352

    PubMed  CAS  Google Scholar 

  • Kormano U, Hovatta O (1972) In vitro contractility of seminiferous tubules following 400 R whole-body irradiation. Strahlentherapie 144: 713–718

    PubMed  CAS  Google Scholar 

  • Kramer MF, Davids JAG, von der Ven TPA (1974) Effect of 1 MeV fast-neutron irradiation on spermatogonial proliferation in mice; influence of dose fraction with different intervals. Int J Radiat Biol 25: 253–260

    CAS  Google Scholar 

  • Krebs JS (1968) Analysis of the radiation induced loss of testes and weights in terms of stem cell survival. USNRDL Tech Rep 18: 68–104

    Google Scholar 

  • Krehbiel RH, Plagge JC (1963) Number of rat ova implanting after substerilizing x-irradiation of one or both ovaries. Anat Res 146: 257–261

    CAS  Google Scholar 

  • Kriegei H, Schmahl W, Kistner G, Stieve FE (eds) (1982) Development effects of prenatal irradiation. Fischer, Stuttgart

    Google Scholar 

  • Kumar A, Devi U (1982) Chemoprotection of ovarian follicles of mice against gamma irradiation by MPG (2-mercaptopropinylglycine). J Radiat Res 23: 306–312

    PubMed  CAS  Google Scholar 

  • Kumar A, Devi U (1983) Chemical radiation protection of ovarian follicles of mice by MPG (2-mercaptopropionyl- glycine). J Nucl Med 27: 9–12

    CAS  Google Scholar 

  • Kumatori T, Ishihara T, Hirashima K, Sugiyma H, Ishii S, Miyoshi K (1980) Follow-up studies over a 25-year period on the Japanese fishermen exposed to radioactive fallout in 1954. In: Hübner KF, Fry SA (eds) The medical basis for radiation accident preparedness. Elsevier, North Holland, pp 33–54

    Google Scholar 

  • Lacassagne A (1936) Untersuchungen über die Radiosensibilität des Corpus luteum und der Uterusschleimhaut mit Hilfe eines künstlich erzeugten Deziduums beim Kaninchen. Strahlentherapie 56: 621–625

    Google Scholar 

  • Lacassagne A, Duplan JF, Marcovich H, Raynaud A (1962) The action of ionizing radiations on the mammalian ovary. In: Zuckerman S (ed) The ovary, vol II. Academic, New York, p 463

    Google Scholar 

  • Ladner HA (1985) Somatische Strahlenreaktionen an Generationsorganen. In: Heuck F, Scherer E (eds) Strahlengefährdung und Strahlenschutz. Springer, Berlin Heidelberg New York Handbuch der medizinischen Radiologie, Vol XX, pp 123–170

    Google Scholar 

  • Lamerton LF (1966) Cell proliferation under continuous irradiation. Radiat Res 27: 119–138

    CAS  Google Scholar 

  • Lamerton LF (1967) Response of mammalian cell populations to continuous irradiation. In: Silini H (ed) Radiation research. North Holland, Amsterdam, pp 658–664

    Google Scholar 

  • Langendorff M, Stevenson AEF (1981) Murine sperma- togonial regeneration after exposure to either x-rays or 15 MeV-neutrons. Radiat Environ Biophys 19: 41–49

    PubMed  CAS  Google Scholar 

  • Langendorff M, Langendorff H, Neumann GK (1972) Die Wirkung einer fraktionierten Röntgenbestrahlung auf die Fertilität von in utero bestrahlten Mäusen. Strahlen- therapie 144: 324–337

    CAS  Google Scholar 

  • Laskey JW, Parrish JL, Cahill DF (1973) Some effects of lifetime parenteral exposure to low levels of tritium on the F2-generation. Radiat Res 56: 171–179

    PubMed  CAS  Google Scholar 

  • Laughlin TJ, Taylor JH (1980) The effects of x-ray on DNA synthesis in synchronized Chinese hamster ovary cells. Radiat Res 83: 205–209

    PubMed  CAS  Google Scholar 

  • Lawson RL, Krise GM, Brown SO, Sorensen AM Jr (1967) Effects of single, continuous, and fractionated gamma irradiation on semen quality in albino rats. Radiat Res 31: 273–280

    Google Scholar 

  • LeFloch A, Donaldson SS, Kaplan HS (1976) Pregnancy following oophoropexy and total nodal irradiation in women with Hodgkin’s disease. Cancer 38: 2263–2268

    CAS  Google Scholar 

  • Leichner PK, Roenshein NB, Leibel SA, Order SE (1980) Distribution and tissue dose of intraperitoneally administered radioactive chromic phosphate in New Zealand white rabbits. Radiology 134: 729–734

    PubMed  CAS  Google Scholar 

  • Leidl W, Zankl H (1970) Untersuchungen über den Einfluβ der Pausendauer bei fraktionierter Röntgenbestrahlung am Modell des Kaninchenhodens. Strahlentherapie 139: 548–552

    PubMed  CAS  Google Scholar 

  • Leporrier M, v Theobald P, Roffe JL, Muller G (1987) A new technique to protect ovarian function before pelvic irradiation Cancer 60: 2201–2204

    PubMed  CAS  Google Scholar 

  • Lindop PJ (1969) The effects of radiation on rodent and human ovaries. Proc Soc Med 62: 144–148

    CAS  Google Scholar 

  • Loraine JA (1957) Recent work on the quantitative determination of pituitary gonadotrophins in urine. Acta Endocrinol 31: 75–84

    CAS  Google Scholar 

  • Lu CC, Meistrich ML, Thames AD (1980) Survival of mouse testicular stem cells after gamma- or neutron irradiation. Radiat Res 81: 402–425

    PubMed  CAS  Google Scholar 

  • Lushbaugh CC, Casarett GW (1976) The effects of gonadal irradiation in clinical radiation therapy: a review. Cancer 37: 1111–1120

    PubMed  CAS  Google Scholar 

  • Lushbaugh CC, Ricks RC (1972) Some cytokinetic and histopathologic considerations of irradiated male and female gonadal tissues. Front Radiat Ther Oncol 6: 228–248

    Google Scholar 

  • Makler A, Tatcher M, Velinsky A, Brandes JM (1980) Factors affecting sperm motility. III. Influence of visible light and other electromagnetic radiation on human sperm velocity and survival. Fertil Steril 33: 439–444

    PubMed  CAS  Google Scholar 

  • Mandl AM (1964) The radiosensitivity of germ cells. Biol Rev 39: 288–371

    PubMed  CAS  Google Scholar 

  • Martius H (1961) Strahlentoleranzdosis der Eierstöcke. Dtsch Med Wochenschr 86: 888–890

    PubMed  CAS  Google Scholar 

  • Matthes T, Kriegei H (1958) Über die Speicherung von Thoriumdioxyd in den Keimdrüsen von Kaninchen und beim Menschen. Strahlentherapie 105: 441–449

    PubMed  CAS  Google Scholar 

  • McCarthy TG, Milton PJD (1975) Successful pregnancy after conservative surgery and radiotherapy for dysger- minoma of the ovary. Br J Obstet Gynecol 82: 64–67

    CAS  Google Scholar 

  • McTaggart J, Wills ED (1977) The effects of whole and partial body irradiation on circulating anterior pituitary hormones and testosterone and the relationship of these hormones to drug-metabolizing enzymes in the liver. Radiat Res 72: 122–133

    PubMed  CAS  Google Scholar 

  • Meistrich ML, Hunter NR, Suzuki N, Trost le PK, Withers HR (1978) Gradual regeneration of mouse testicular stem cells after exposure of ionizing radiation. Radiat Res 74: 349–362

    PubMed  CAS  Google Scholar 

  • Meistrich ML, Finch MV, Hunter N, Milas L (1984a) Protection of spermatogonial survival and testicular function by WR-2721 against high and low dose radiation. Int J Radiat Oncol Biol Phys 10: 2099–2107

    PubMed  CAS  Google Scholar 

  • Meistrich ML, Finch M, Lu CC, de Ruiter-Bootsma AL, de Rooij DG, Davids JAG (1984b) Strain differences in the response of mouse testicular stem cells to fractionated radiation. Radiat Res 97: 478–487

    PubMed  CAS  Google Scholar 

  • Meistrich ML, Samuels RC (1985) Reduction in sperm levels after testicular irradiation of the mouse: a com- parison with man. Radiat Res 102: 138–147

    PubMed  CAS  Google Scholar 

  • Meyer MB, Tonascia JA (1973) Possible effects of x-ray exposure during fetal life on the subsequent reproductive performance of human females. Am J Epidemiol 114: 304–316

    Google Scholar 

  • Meyer MB, Merz T, Diamond EL (1969) Investigation of the effects of prenatal x-ray exposure of human oogonia oocytes as measured by later reproductive performance. Am J Epidemiol 89: 619–635

    PubMed  CAS  Google Scholar 

  • Meyer MB, Tonascia JA, Merz T (1976) Long term effects of prenatal x-rays on development and fertility of human females. In: Biological and environmental effects of low-level radiation, vol II. Proceedings of symposium, Chicago, 3–7 Nov 1975. International Atomic Energy Agency, Vienna

    Google Scholar 

  • Meyhöfer W, Hülsmann B, Morchek H (1971) Der Einfluß von Röntgenstrahlen auf die Spermiogenese der Maus (DNS- und Histonproteine in Spermatozoien). Fortschr Fertil Forsch 2: 58–62

    Google Scholar 

  • Mian TA, Suzuki N, Glenn HJ, Hayne TP, Meistrich M (1977) Radiation damage to mouse testis cells from (99mTc) pertechnetate. J Nucl Med 18: 1116–1122

    PubMed  CAS  Google Scholar 

  • Milas L, Hunter N, Reid BO (1982) Protective effects of WR-2721 against radiation-induced injury of murine gut, testis, lung, and lung tumor nodules. Int J Radiat Oncol Biol Phys 8: 535–538

    PubMed  CAS  Google Scholar 

  • Miller SC (1982) Localization of plutonium-241 in the testis. An interspecies comparison using light and elec- tron microscope autoradiography. Int J Radiat Biol 41: 633–643

    CAS  Google Scholar 

  • Miller SC, Rowland HG, Bowman BM (1985) Distribu- tions of cell populations within A-particle range of plutonium deposits in the rat and beagle testis. Radiat Res 101: 102–110

    PubMed  CAS  Google Scholar 

  • Miller SC, Bruenger FW, Williams FW (1989) Influence of age at exposure on concentrations of Pu-239 in beagle gonads. Health Phys 56: 485–492

    PubMed  CAS  Google Scholar 

  • Mondorf L, Faber M (1968) The influence of radiation on human fertility. J Reprod Fertil 15: 165–169

    PubMed  CAS  Google Scholar 

  • Montour JL, Wilson JD (1979) Mouse testis weight loss following high energy neutron or gamma irradiation. Int J Radiat Biol 36: 185–189

    CAS  Google Scholar 

  • Mroueh AM (1971) The excretion of radioiodine in human semen. Fertil Steril 22: 61–63

    PubMed  CAS  Google Scholar 

  • Müller C, Kubat K, Marsalek J (1962) Der Einfluβ des Arbeitsrisikos auf die Generationsfunktionen der beim Fördern und Aufbereiten von radioaktiven Rohstoffen beschäftigten Frauen. Zentralbl Gynaekol 15: 561–568

    Google Scholar 

  • Müller J, Hertz H, Skakkebaeck NE (1988) Development of the seminiferous epithelium during and after treatment for acute lymphoblastic leukemia in childhood. Horm Res 30: 115–120

    PubMed  Google Scholar 

  • Müller W (1915) Beitrag zur Frage der Strahlenwirkung auf tierische Zellen, besonders die der Ovarien. Strahlentherapie 5: 155–147

    Google Scholar 

  • Muramatsu S, Tsuchiya T, Hanada H (1978) Effects of continuous gamma radiation on the reproductivity of mice. In: Late biological effects of ionizing radiation, vol II. IAEA, Vienna, pp 191–198

    Google Scholar 

  • Nader S, Schultz PN, Cundiff JH, Hussey PH, Samaan NA (1983) Endocrine profiles of patients with testicular tumours treated with radiotherapy. Int J Radiat Oncol Biol Phys 9: 1723–1726

    PubMed  CAS  Google Scholar 

  • Naujokat B, Rohloff R, Willich N, Eiermann W (1988) Veränderungen der Serumspiegel weiblicher Geschlechts- hormone nach Strahlenkastration mit unterschiedlicher Gesamtdosis. Strahlenther Onkol 164: 208–213

    PubMed  CAS  Google Scholar 

  • Nebel BR, Murphy CJ (1960) Damage and recovery of mouse testis after 1000 r acute localized x-irradiation, with reference to restitution cells, Sertoli cell increase and type A spermatogonial recovery. Radiat Res 12: 626–641

    Google Scholar 

  • Niedetzky A, Lautai CS (1969) Effect of radioactive radiations on the lifetime of sperms. Acta Biochem Biohys 211–216

    Google Scholar 

  • Nijiman JM, Jager S, Boer PW, Kremer J, Oldhoff J, Koops HS (1982) The treatment of ejaculation disorders after retroperitoneal lymph node dissection. Cancer 50: 2967–2971

    Google Scholar 

  • Nikandrova TI, Zhulanova ZI, Romatsev EF (1981) Prostaglandin synthase activity in the liver, brain and testicles of (CBA C57 B1) mice under irradiation. Radiobiology 21: 265–269

    PubMed  CAS  Google Scholar 

  • Nseyo UO, Huben RT, Klioze SS, Pontes JE (1985) Protection of germinal epithelium with luteinizing hormone-releasing hormone analogue. J Urol 34: 187–190

    Google Scholar 

  • Oakberg EF (1968) Mammalian gametogenesis and species comparisons in radiation response of the gonads. In: Effects of radiation on meiotic systems. IAEA, Vienna, pp 3–15

    Google Scholar 

  • Oakberg EF (1975) Effects of radiation on the testis. In: Hamilton DW, Greep RO (eds) Male reproductive system. William & Wilkins, Baltimore (Handbook of Physiology, Sect 7, vol V, pp 233–243)

    Google Scholar 

  • Oakberg EF (1978) Differential spermatogonial stem-cell survival and mutation frequency. Mutat Res 50: 327–340

    PubMed  CAS  Google Scholar 

  • Oakberg EF (1979) Timing of oocyte maturation in the mouse and its relevance to radiation-induced cell killing and mutational sensitivity. Mutat Res 59: 39–48

    PubMed  CAS  Google Scholar 

  • Oakberg EF, Huckins C (1976) Spermatogonial stem cell renewal in the mouse as revealed by 3H-thymidine labeling and irradiation. In: Cairne AB, Lala PK, Osmond DG (eds) Stem cells of renewing cell popula- tion. Academic, New York, pp 287–302

    Google Scholar 

  • Oakberg EF, Lorenz EC (1972) Irradiation of generative organs. In: Hug O, Zuppinger A (eds) Strahlenbiologie 3. Springer, Berlin Heidelberg New York (Handbuch der medizinischen Radiologie, Vol II/3, pp 217–233

    Google Scholar 

  • O’Brien CA, Hupp EW, Sorensen AM, Brown SO (1966) Effects of prenatal gamma radiation on the reproductive physiology of the Spanish goat. Am J Vet Res 27: 711

    PubMed  Google Scholar 

  • Orecklin JR, Kaufmann JJ, Thompson RW (1973) Fertility in patients treated for malignant testicular tumors. J Urol 109: 293–295

    PubMed  CAS  Google Scholar 

  • Overstreet JW, Adams CE (1971) Mechanisms of selective fertilization in the rabbit: sperm transport and viability. J Reprod Fertil 26: 219

    PubMed  CAS  Google Scholar 

  • Paulsen CA (1973) The study of radiation effects on the human testis: including histology, chromosomal and hormonal aspects. Final progress report of AEC contract AT (45-1)-2225, task agreement 6, RLO-2225-2

    Google Scholar 

  • Pearson AE, Steel GG (1984) Chemotherapy in combination with pelvic irradiation: a time-dependence study in mice. Radiother Oncol 2: 49–55

    PubMed  CAS  Google Scholar 

  • Pearson AK, Licht P, Nagy KA, Medica PA (1978) Endocrine function and reproductive impairment in an irradiated population of the lizard Ute stansburiana. Radiat Res 76: 610–623

    PubMed  CAS  Google Scholar 

  • Peceski J, Malcic K (1969) The effect of local irradiation of the gonads of infantile and adult male rats on the survival and regeneration of reproductive organs. Strahlenther- apie 137: 394–498

    Google Scholar 

  • Peck WS, McGreer JT, Kretzschmar NR, Brown WE (1940) Castration of the female by irradiation. Radiology 34: 176–186

    Google Scholar 

  • Pedrick J, Hoppe RT (1986) Recovery of spermatogenesis following pelvic irradiation for Hodgkin’s disease. Int J Radiat Oncol Biol Phys 12: 117–121

    PubMed  CAS  Google Scholar 

  • Peters H (1969) The effect of radiation in early life on the morphology and reproductive function of the mouse ovary. In: McLaren A (ed.) Advances in reproductive physiology, 4149. Logos-Academic, London

    Google Scholar 

  • Philipp F (1904) Die Röntgenbestrahlung der Hoden des Mannes. Fortschr Roentgenstr 8: 114–119

    Google Scholar 

  • Philipp F (1932) Erhaltung der Genitalfunktion nach Bestrahlung wegen Uteruskarzinom. Zentralbl Gynaekol 56: 1409–1412

    Google Scholar 

  • Pietrzak-Fils Z (1982) Effects of chronically ingest tritium on the oocytes of two generations of rats. In: Kriegei H (eds) Developmental effects of prenatal irradiation. Fischer, Stuttgart, pp 111–115

    Google Scholar 

  • Pinkel D, Gledhill BL, van Dilla MA, Lake S, Wyrobek AJ (1983) Radiation-induced DNA content variability in mouse sperm. Radiat Res 95: 550–565

    PubMed  CAS  Google Scholar 

  • Pinon-Lataillade G, Maas J (1985) Continuous gamma- irradiation of rats: dose-rate effect on loss and recovery of spermatogenesis. Strahlentherapie 161: 421–426

    PubMed  CAS  Google Scholar 

  • Pogany GC (1983) Oxygen consumption in gamma irradiated mouse testes. J Radiat Res 24: 173–183

    PubMed  CAS  Google Scholar 

  • Popescu HI, Klepsch I, Lancranja J (1969) Utility of urinary total gonadotrophin excretion determination after acute irradiations by penetrating rays. Radiat Res 40: 544–551

    PubMed  CAS  Google Scholar 

  • Popescu HI, Klepsch I, Lancrangan J (1975) Elimination of pituitary gonadotropic hormones in men with protracted irradiation during occupational exposure. Health Phys 29: 385–389

    PubMed  CAS  Google Scholar 

  • Prasad N, Prasad R, Bushong SC, North LB (1977) Effect of irradiation on testicular cells of opossum. Strahlentherapie 153: 470–473

    PubMed  CAS  Google Scholar 

  • Price JJ, Rominger J (1965) Carcinoma of the cervix treated during pregnancy and followed by successful pregnancy. Obstet Gynecol 26: 272–274

    PubMed  CAS  Google Scholar 

  • Rao RA, Srivastava PN (1967) Ovarian changes induced by chronic gamma radiation emitted by sealed cobalt-60 source placed inside the abdomen in the Indian desert gerbil. Strahlentherapie 133: 594–601

    PubMed  CAS  Google Scholar 

  • Rao LRA, Srivastava PN (1982) Oocyte depopulation pattern in adult Indian desert gerbil exposed to internally deposited 32P, 60Co and 45Ca. J Radiol Res 23: 176–186

    CAS  Google Scholar 

  • Rassow J, Strüter HD (1970) Systematische Untersuchungen mit LiF-Thermolumineszenzdetektoren TLD 100 am Alderson-Phantom zur Gonadenbelastung bei der Therapie mit konventionellen Röntgenstrahlen (60–300 kV), Telegammastrahlen (1 37Cs und 60Co) sowie Betatronbems- und Elektronenstrahlen von 20 und 43 MeV-grenzenergie. Strahlentherapie 139: 446–458

    PubMed  CAS  Google Scholar 

  • Rathenberg, R, Schwegler H, Miska W (1976) Comparative investigations on cytogenetic effects of x-irradiation on the germinal epithelium of male mice Chinese hamsters. Hum Genet 34: 171–183

    PubMed  CAS  Google Scholar 

  • Regaud C (1977a) The influence of the duration of irradiation on the changes produced in the testicle by radium. Übers C R Soc Biol (Paris) (1922) 86: 787–789. Int J Radiat Oncol Biol Phys 2: 565–567

    Google Scholar 

  • Regaud C (1977b) The alternating rhythm of cellular mitoses and the radiosensitivity of the testis. Übers C R Soc Biol (Paris) (1922) 86: 822–824. Int J Radiol Oncol Biol Phys 2: 569–570

    Google Scholar 

  • Reifferscheid K (1914) Die Einwirkung der Röntgenstrahlen auf tierische und menschliche Eierstöcke. Strahlentherapie 5: 407–425

    Google Scholar 

  • Rich KA, de Kreter DM (1977) Effect of differing degrees of destruction of the rat seminiferous epithelium on levels of serum follicle stimulating hormone and androgen binding protein. Endocrinology 101: 959–968

    PubMed  CAS  Google Scholar 

  • Richmond CR, Thomas RL (1975) Plutonium and other actinide elements in gonadal tissue of man and animals. Health Phys 29: 241–250

    PubMed  CAS  Google Scholar 

  • Richter D (1982) Psychosomatisch und endokrinologisch orientierte Diagnostik und Therapie des sekundären Amenorrhoe-Syndroms. Gynaekologe 15: 173–189

    CAS  Google Scholar 

  • Rikmenspoel R (1975) III. Further x-ray studies. Biophys J 15: 831–841

    PubMed  CAS  Google Scholar 

  • Rikmenspoel R, van Herpen G (1969) Radiation damage to bull sperm motility. II. Proton irradiation and respiration measurements. Biophys J 9: 833

    PubMed  CAS  Google Scholar 

  • Robinson JN, Engle ET (1949) Effect of neutron radiation on the human testes: a case report. J Urol 61: 781–784

    PubMed  CAS  Google Scholar 

  • Rönnbäck C (1979) Effect of 90Sr on ovaries of foetal mice depending on time for administration during pregnancy. Acta Radiol (Oncol) 18: 225–234

    Google Scholar 

  • Rönnbäck C (1981) Influence of 90Sr-contaminated milk on the ovaries of foetal and young mice. Acta Radiol (Oncol) 20: 131–135

    Google Scholar 

  • Rönnbäck C, Henricson B, Nilsson A (1971) Effect of different doses of 90-Sr on the ovaries of the foetal mouse. Acta Radiol 310: 200–209

    Google Scholar 

  • Rooij DG (1978) The effect of x-irradiation on spermatogenesis in the rhesus monkey. Int J Radiat Biol 34: 565–566

    Google Scholar 

  • Rosier H, Moser M (1984) Schwangerschaft nach hoch- dosierter Radiojod-Therapie. In: Schmidt HAE, Adam WE (eds) Nuklearmedizin. 21. Jahrestagung Gesellschaft Europa 13–16.9.1983, Ulm. Schattauer, Stuttgart, pp 920–923

    Google Scholar 

  • Rowley MJ, Leach DR, Warner GA, Heller CG (1974) Effect of graded doses of ionizing radiation on the human testis. Radiat Res 59: 665–678

    PubMed  CAS  Google Scholar 

  • Rubin P, Casarett G (1972) A direction for clinical radiation pathology. The tolerance dose. Front Radiat Ther Oncol 6: 1–16

    Google Scholar 

  • Rugh R, Budd RA (1975) Does x-radiation of the preconceptional mammalian ovum lead to sterility and/ or congenital anomalies? Fertil Steril 26: 560–572

    PubMed  CAS  Google Scholar 

  • Rugh R, Clugston H (1955) Radiosensitivity with respect to the estrous cycle in the mouse. Radiat Res 2: 227–236

    PubMed  CAS  Google Scholar 

  • Rugh R, Skaredorf L (1971) The immediate and delayed effects of 1000 R x-rays on the rodent testis. Fertil Steril 22: 73–82

    PubMed  CAS  Google Scholar 

  • Rush ME, Lipner H (1979) Effect of bovine testicular extracts on plasma gonadotrophins of x-irradiated rats. Proc Soc Biol Med 162: 85–89

    CAS  Google Scholar 

  • Russel JJ, Lindenbaum A (1979) One-year study of nonuniformly distributed plutonium in mouse testis as related to spermatogonial irradiation. Health Phys 36: 153–157

    Google Scholar 

  • Russell WL (1962) An augmenting effect of dose fractiona- tion on radiation-induced mutation rate in mice. Proc Natl Acad Sci (us) 48: 1724–1727

    CAS  Google Scholar 

  • Saharan BR, Devi PU (1977) Radiation protection of mouse testes with 2-mercaptopropionylglycine. J Radiat Res (Tokyo) 18: 308

    CAS  Google Scholar 

  • Sandeman TF (1966) The effects of x-irradiation on male human fertility. Br J Radiol 39: 901–907

    PubMed  CAS  Google Scholar 

  • Sanders JE, Buckner CD, Leonard JM (1983) Late effects on gonadal function of cyclophosphamide, total body irradiation and marrow transplantation. Transplantation 36: 252–255

    PubMed  CAS  Google Scholar 

  • Sankaranarayanan K (1982) Genetic effects of ionizing radiation in multicellular eukaryotes and the assessment of genetic radiation hazards in man. Elsevier Biomedical, Amsterdam

    Google Scholar 

  • Sarkar SD, Beierwaltes WH, Gill SP, Cowley BJ (1976) Subsequent fertility and birth histories of children and adolescent treated with I-131 for thyroid cancer. J Nucl Med 17: 460

    PubMed  CAS  Google Scholar 

  • Satow Y, Hori H, Lee YL, Ohtaki M et al. (1989) Effect of tritiated water on gemale germ cells: mouse oocyte killing and RBE. Int J Radiat Biol 56: 293–300

    PubMed  CAS  Google Scholar 

  • Savkovic N, Kacaki J, Andjus R, Malkic K (1966) The effect of local irradiation of the head of rats in the infantile period on spermatogenesis. Strahlentherapie 130: 432–436

    Google Scholar 

  • Scherholz KP, Frommhold H, Barwig P (1978) Strahlenbe- lastung der Ovarien bei Bestrahlung der paraaortalen, iliakalen und inguinalen Lymphknoten mit Telekobalt sowie mit Photonen der Energie 42 MeV. Strahlenther- apie 154: 844–851

    CAS  Google Scholar 

  • Schoen EJ (1964) Effect of local irradiation on testicular androgen biosynthesis. Endocrinology 75: 56–65

    PubMed  CAS  Google Scholar 

  • Schreiber H, Plishuk Z (1956) The effect of x-rays on the ovaries in childhood and adolescence. Br J Radiol 29: 687

    PubMed  Google Scholar 

  • Searle AG, Beechey CV, Green D, Howells GR (1980) Comparative effects of protracted exposures to 60Co x-radiation and 239Pu x-radiation on breeding performance in female mice. Int J Radiat Biol 37: 189–200

    CAS  Google Scholar 

  • Searle AG, Beechy CV, Green D, Howells GR (1982) Dominant lethal and ovarian effects of plutonium-239 in female mice. Int J Radiat Biol 42: 235–244

    CAS  Google Scholar 

  • Seigel DG (1966) Frequency of live births among survivors of Hiroshima and Nagasaki atomic bombings. Radiat Res 28: 278

    PubMed  CAS  Google Scholar 

  • Shalet SM, Beardwell CG, Morris PH, Pearson D, Orrell DH (1976) Ovarian failure following abdominal irradia- tion in childhood. Br J Cancer 33: 655–658

    PubMed  CAS  Google Scholar 

  • Shalet SM, Beardwell CG, Jacobs HS, Pearson D (1978) Testicular function following irradiation of the human prepubertal testis. Clin Endocrinol 9: 483–490

    CAS  Google Scholar 

  • Shalet SM, Horner A, Ahmed SR, Morris-Jones PH (1985) Leydig cell damage after testicular irradiation for acute lymphoblastic leukaemia. Med Pediatr Oncol 13: 65–68

    PubMed  CAS  Google Scholar 

  • Shamberger RC, Sherins RJ, Rosenberg SA (1981) Effects of postoperative adjuvant chemotherapy and radiother- apy on testicular function in man undergoing treatment for soft tissue sarcoma. Cancer 47: 2368–2374

    PubMed  CAS  Google Scholar 

  • Shehata N (1983) The effect of gamma rays on the gonads of the olive fruit fly, Dacus oleae (Gmelin). Int J Radiat Biol 43: 169–173

    CAS  Google Scholar 

  • Shelton M (1961) The secretion of androgen by the x- irradiated ovary of the adult rat. Acta Endocrinol 37: 529–540

    CAS  Google Scholar 

  • Sheridan W (1971) The effects of the time interval in fractionated x-ray treatment of mouse spermatogonia. Mutat Res 13: 163–169

    PubMed  CAS  Google Scholar 

  • Shimizu K, Ishikava K, Nakamurak K, Sato I (1955) Study on the spermatogenesis of the Bikini victims. J Jpn Surg Ass 55: 1221–1230

    Google Scholar 

  • Shimizu K, Ishikawa K, Saito Y et al. (1956) Some observations on the victims of the Bikini-H-bomb-test explosions. In: Research in the effects and influences of the nuclear bomb test, vol II. Japan Society for the Promotion of Science. Tokyo, 1333–1351

    Google Scholar 

  • Sklar, CA, Robinson LL, Nesbit ME, Sather HN, Meadows AT, Ortega JA, Kim TH, Hammond GD (1980) Effects of radiation on testicular function in long-term survivors of childhood acute lymphoblastic leukemia. A report from the children’s cancer study group. J Clin Oncol 8: 1981–1987

    Google Scholar 

  • Slanina J, Musshoff K, Rahner T, Stiasny R (1977) Long- term side effects in irradiated patients with Hodgkin’s disease. Int J Radiat Oncol Biol Phys 2: 1–19

    PubMed  CAS  Google Scholar 

  • Slanina J, Wannenmacher M, Spratler J (1985) Schwangerschaft und Kindesentwicklung nach Therapie des Morbus Hodgkin. Strahlentherapie 161: 558–564

    PubMed  CAS  Google Scholar 

  • Smith P, Doll R (1976) Late effects of x-irradiation treated for metropathia haemorrhagica. Br J Radiol 49: 244

    Google Scholar 

  • Smithers DW, Wallace DN, Austin DE (1973) Fertility after unilateral orchidectomy and radiotherapy for pa- tients with malignant tumors of the testis. Br J Med 4: 77–79

    CAS  Google Scholar 

  • Sobels FH (1969) Estimation of the genetic risk resulting from the treatment of women with 131iodine. Strahlen- therapie 138: 172–177

    CAS  Google Scholar 

  • Sommers SC (1953) Endocrine changes after hemiadre- nalectomy and total body irradiation in parabiotic rats. J Lab Clin Med 42: 396–407

    PubMed  CAS  Google Scholar 

  • Spalding JF, Wellnitz JM, Schweitzer WH (1957) The effects of high-dosage x-rays on the maturation of the rat ovum, and their modification by gonadotropins. Fertil Steril 8: 80–88

    PubMed  CAS  Google Scholar 

  • Speiser B, Rubin P, Casarett G (1973) Aspermia following lower truncal irradiation in Hodgkin’s disease. Cancer 32: 692–698

    PubMed  CAS  Google Scholar 

  • Spiro G, Wachsmann F (1962) Über die Wirkung einzeitig und fraktioniert verabreichter Röntgenstrahlen auf Rat- tenhoden. Strahlentherapie 118: 153–158

    Google Scholar 

  • Srivastava PN, Rao AR (1967) Co60-induced radiation changes in the ovary of unilaterally ovariectomized Indi- an desert gerbil, Meriones hurrianae Jerdon. Strahlen- therapie 134: 452–456

    CAS  Google Scholar 

  • Stillman RJ, Schinfeld JS, Schiff I et al. (1981) Ovarian failure in long-term survivors of childhood malignancy. Am J Obstet Gynecol 139: 62–66

    PubMed  CAS  Google Scholar 

  • Straume T, Dobson RL (1985) Mouse oocyte killing by neutrons: target considerations. Radiat Prot Dosim 13: 215–227

    Google Scholar 

  • Straume T, Dobson L, Kwan TC (1987) Neutron RBE’s and the radiosensitive target for mouse immature oocyte killing. Radiat Res 111: 47–57

    PubMed  CAS  Google Scholar 

  • Straume T, Dobson RL, Kwan TC (1989) Size of lethality target in mouse immature oocytes determined with accelerated heavy ions. Radiat Environ Biophys 28: 131–139

    PubMed  CAS  Google Scholar 

  • Suzuki K, Inano H, Tamaoki B (1973) Testicular function at puberty following prepubertal local x-irradiation in the rat. Biol Reprod 9: 1–8

    PubMed  CAS  Google Scholar 

  • Tabuchi A, Nakagawa S, Hirai T et al. (1967) Fetal hazards due to x-ray diagnosis during pregnancy. Hiroshima J Med Sci 16: 49–66

    PubMed  CAS  Google Scholar 

  • Taylor DM (1977) The uptake, retention and distribution of plutonium-239 in rat gonads. Health Phys 32: 29–31

    PubMed  CAS  Google Scholar 

  • Thithapandha A, Chanachai W, Suriyachon D (1979) Effects of γ-irradiation on plasma testosterone levels and hepatic drug metabolism. Radiat Res 79: 203–207

    PubMed  CAS  Google Scholar 

  • Thomas PRM, Winstanly D, Peckham MJ, Austin DE, Murray MAF, Jacobs HS (1976) Reproductive and en- docrine function in patients with Hodgkin’s disease: effects of oophoropexy and irradiation. Br J Cancer 33: 226

    PubMed  CAS  Google Scholar 

  • Thomas RG, Healy JW, Mclnroy JF (1985) Plutonium in gonads: a summary of the current status. Health Phys 48: 7–18

    PubMed  CAS  Google Scholar 

  • Thorslund TM, Paulsen CA (1972) Effects of x-ray irradia- tion on human spermatogenesis. In: Warman EA (ed) Nat symp natural manmade radiat Sp. NASA TMX 2440, pp 229–232

    Google Scholar 

  • Thüroff JW (1982) Fertilitätsstörungen nach retroperi- tonealer Lymphadenektomie. Dtsch Med Wochenschr 107: 834

    Google Scholar 

  • Tindall DJ, Vitale R, Means AR (1975) Androgen binding protein as a biochemical marker of formation of the blood-testis barrier. Endocrinology 97: 636–648

    PubMed  CAS  Google Scholar 

  • Tomic R, Bergman B, Damber JE, Littbrand B, Lofroth PO (1983) Effects of external radiation therapy for cancer of the prostate on the serum concentrations of testosterone, follicle-stimulating hormone, luteinizing hormone and prolactin. J Urol 130: 287–289

    PubMed  CAS  Google Scholar 

  • Török P, Schmahl W (1982) Einfluβ von 5-Azazytidin und akuter Röntgenbestrahlung auf Mäusetestes während der sexualen Differenzierung in utero. In: Kriegei H, Schmahl W, Kistner G, Stieve FE (eds) Entwicklungs- störungen nach pränataler Bestrahlung. Fischer, Stuttgart, pp 305–308

    Google Scholar 

  • Török P, Schmahl W, Meyer I, Kistner G (1979) Effects of a single injection of tritiated water during organogeny on the prenatal and postnatal development of mice. In: Biological implications of radionuclides released for nuclear industries. Int Atomic Energy Agency 1, Vienna

    Google Scholar 

  • Trautmann J (1963) Hoden. In: Scherer E, Stender HS (eds) Strahlentherapie der Zelle. Thieme, Stuttgart, pp 195–208

    Google Scholar 

  • Trautmann J, Millin G (1962/63) Wirkungen subletaler Strahlendosen auf den Zyklus und Oestrus der weiβen Laboratoriumsmaus. I. und II. Mitteilung. Strahlenther- apie 118: 67–76; 122: 558–564

    CAS  Google Scholar 

  • Trueblood HW, Enright LP, Ray GR, Kaplan HS, Nelsen TS (1970) Preservation of ovarian function in pelvic radiation for Hodgkin’s disease. Arch Surg 100: 236–237

    PubMed  CAS  Google Scholar 

  • Unger E (1976) Histologische Untersuchungen nach ex- perimenteller Rasterstrahlung. Befunde von Kanin- chenhoden. Strahlentherapie 132: 255–267

    Google Scholar 

  • Unger E (1980) Histological effects of low-dose-rate gam- ma-irradiation. Strahlentherapie 156: 46–50

    PubMed  CAS  Google Scholar 

  • Vahlensieck W, Weissbach L (1974) Vergleich andrologis- cher Befunde bei jüngeren und älteren Männern mit Hodentumoren. Ref Congr Urol et Nephrol, Budapest, 17–19.10.1974

    Google Scholar 

  • Valenta M, Kolousek J, Fulka J (1963) The influence of ionizing radiation on nucleic acids, vitality and fecundat- ing ability of male sexual cells. Int J Radiat Biol 6: 81–91

    PubMed  CAS  Google Scholar 

  • Valentin K (1978) Normal stem cell proliferation and cell depletion after x-irradiation of spermatogonia of inbred and hybrid mice. Hereditas 88: 117–126

    PubMed  CAS  Google Scholar 

  • van Alphen MMA, van de Kant HJG, de Rooij DG (1988a) Depletion of the spermatogonia from the semi- niferous epithelium of the rhesus monkey after x- irradiation. Radiat Res 113: 473–486

    PubMed  Google Scholar 

  • van Alphen MM A, van de kant HJG, de Rooij DG (1988b) Repopulation of the seminiferous epithelium of the rhesus monkey after x-irradiation. Radiat Res 113: 487–500

    PubMed  Google Scholar 

  • van Beek MEAB, Davids JAG, van de kant HJG, de Rooij DG (1984) Response to fission neutron irradiation of spermatogonial stem cells in different stages of the cycle of the seminiferous epithelium. Radiat Res 97: 556–569

    PubMed  Google Scholar 

  • van Beek MEAB, Davids JAG, de Rooij DG (1986) Nonrandom distribution of mouse spermatogonial stem cells surviving fission neutron irradiation. Radiat Res 107: 11–23

    PubMed  Google Scholar 

  • van den Aardweg GJMJ, de Ruiter-Bootsma AL, Kramer MF (1982) Growth of spermatogenetic colonies in the mouse testis after irradiation with fission neutrons. Radiat Res 89: 150–165

    PubMed  Google Scholar 

  • van den Aardweg GJMJ, de Ruiter-Bootsma AL, Kramer MF, Davids JAG (1983) Growth and differentiation of spermatogenic colonies in the mouse testis after irradia- tion with fission neutrons. Radiat Res 94: 447–463

    PubMed  Google Scholar 

  • van Kroonenburgh MJPG, Vandaal WAJ, Beck JL, Vemer HM, Rolland R, Herman CJ (1987) Survival of sperma- togonial stem cells in the rat after split dose irradiation during LH-RH-analogue treatment. Radiother Oncol 9: 67–71

    PubMed  Google Scholar 

  • van Wagenen G, Gardner WU (1960) x-irradiation of the ovary in the monkey. Fertil Steril 11: 291–302

    Google Scholar 

  • van Vermande-Eck GJ (1959) Effect of low-dosage x- irradiation upon pituitary gland and ovaries of the rhesus monkey. Fertil Steril 10: 190–202

    Google Scholar 

  • Verjans HJ, Eik-Nes KB (1976) Hypothalamic-pituitary- testicular system following testicular x-irradiation. Acta Endocrinol 83: 190–200

    PubMed  CAS  Google Scholar 

  • Vorisek P, Jirasek JE (1967) Morphologische Veränderungen an intrauterin mit kontinuierlichen kleinen Dosen bestrahlten Ovarien. Strahlentherapie 132: 79–89

    PubMed  CAS  Google Scholar 

  • Vorisek P, Vondracek J (1968) Der Mechanismus der postnatalen Veränderungen des Follikelapparates bei intrauterin mit kleinen Dosen bestrahlten Ovarien. Strahlentherapie 135: 602–609

    PubMed  CAS  Google Scholar 

  • Wakabayashi K, Isurugi K, Tamaoke B, Akaboshi S (1974) Serum levels of luteinizing hormone (LH) and follicle stimulating hormone (FSH) in subjects accidentally ex- posed to 192-Ir gamma rays. J Radiat Res 14: 297

    Google Scholar 

  • Wall PG (1961) Effects of x-irradiation on differentiating Leydig cells of the immature rat. J Endocrinol 23: 291–301

    PubMed  CAS  Google Scholar 

  • Walther G, Schmidt KJ, Ladner HA (1968) Das histoche- mische Verhalten der Isocitrat-. Succinat- und Malathyd- rogenase sowie der Cytochromoxydase in Rattenorganen nach Ganzkörperbestrahlung. Strahlentherapie 136: 500–507

    PubMed  CAS  Google Scholar 

  • Wang J, Galil KAA, Setchell BP (1983) Changes in testicu- lar blood flow and testosterone production during asper- matogenesis after irradiation. J Endocrinol 98: 35–46

    PubMed  CAS  Google Scholar 

  • Weissbach L, Lange CE, Meyhofer W (1974a) Hodenhisto- logie, Ejakulat und Nukleoproteingehalt der Spermato- zoen behandelter Hodentumorpatienten. Andrologia 5: 135–146

    Google Scholar 

  • Weissbach L, Lange CE, Rodermund OE, Zwicker H, Gropp A, Pothmann W (1974b) Fertilitätsstörungen bei behandelten Hodentumorpatienten. Urologie 13: 80–85

    CAS  Google Scholar 

  • Whelton JA, McSweeney DJ (1964) Successful pregnancy after radiation for carcinoma of cervix. Am J Obstet Gynecol 88: 443–446

    PubMed  CAS  Google Scholar 

  • Wigg DR, Murray ML, Koschel K (1982) Tolerance of the central nervous system to photon irradiation. Endocrine complications. Acta Radiol (Onkol) 21: 49–60

    CAS  Google Scholar 

  • Wigoder SB (1929) The effect of x-rays on the testis. Br J Radiol 2: 213–221

    Google Scholar 

  • Willemse PHB, Sleijfer DT, Sluiter WJ, Koops HS, Doorenbos H (1983) Altered Leydig cell function in patients with testicular cancer: evidence for a bilateral testicular defect. Acta Endocrinol (Copenh) 102: 616–624

    CAS  Google Scholar 

  • Withers HR, Hunter N, Barkley HT Jr, Reid BO (1974) Radiation survival and regeneration characteristics of spermatogenic stem cell of mouse testis. Radiat Res 54: 88–103

    Google Scholar 

  • Yoshimura N, Etoh H, Egami N, Asami K, Yamada T (1969) Note on the effects of β-rays from 89Sr-90Y on spermatogenesis in the teleost, Oryzias latipes. Anat Zool Jpn 42: 75–79

    CAS  Google Scholar 

  • Zollinger HU (1960) Radio-Histologie und Radio- Histopathologie. In: Roulet F (ed) Strahlung und Wet- ter. (Handbuch der allgemeinen Pathologie, Vol X/1, pp 209–215) Springer, Berlin Göttingen Heidelberg

    Google Scholar 

  • Zuckerman S (1965) The sensitivity of the gonads to radiation. Clin Radiol 16: 1–15

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ladner, H. (1991). Reproductive Organs. In: Scherer, E., Streffer, C., Trott, KR. (eds) Radiopathology of Organs and Tissues. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83416-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83416-5_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83418-9

  • Online ISBN: 978-3-642-83416-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics