Skip to main content

NMR Imaging: An Appraisal of the Present and the Future

  • Chapter
Book cover Innovations in Diagnostic Radiology

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

Since its conception by Lauterbur in 1973 and independently by Mansfield and Grannell (1975), nuclear magnetic resonance (NMR) imaging has grown rapidly to become a viable clinical imaging modality that is now the method of choice for many applications (Kressel 1985; Stark and Bradley 1988). NMR imaging (often referred to as magnetic resonance imaging, MRI) times have decreased dramatically from hours to milliseconds and resolutions have improved in certain cases from centimeters to microns. A dramatic range of information is available from the technique that sets it apart from all other imaging modalities in terms of its flexibility, and we are still on the growing curve in terms of NMR imaging techniques and applications. The drive behind this virtual explosion of techniques has been the noninvasive nature of NMR imaging and its implications with respect to the diagnostic study of the human body. Most NMR imaging concerns the observation and spatial mapping of the hydrogen nucleus (1H) in water, since water is the most abundant material in the human body and consequently 1H gives the most signal with respect to other resonant nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abragam A (1961) The principles of nuclear magnetism. Clarendon, Oxford

    Google Scholar 

  • Aguayo JB, Blackband SJ, Schoeniger J, Mattingly M, Hintermann M (1986) Nuclear magnetic resonance imaging of a single cell. Nature 322: 190–191

    Article  PubMed  CAS  Google Scholar 

  • Aguayo JB, Blackband SJ, Wehrle JP, Glickson JD, Mattingly MA (1987) NMR microscopic studies of eyes and tumors with histological correlation. Ann NY Acad Sc 508: 399–413

    Article  CAS  Google Scholar 

  • Anderson WA (1961) Electrical current shims for correction magnetic fields. Rev Sci Instrum 32: 241

    Article  Google Scholar 

  • Aue WP, Muller S, Cross TA, Seeling JJ (1984) Volume-selective excitation. A novel approach to topical NMR. J Magn Reson 56: 350

    CAS  Google Scholar 

  • Bednorz JG, Muller KA (1986) Possible high Tc superconductivity in the Ba-LA-Cu-O system. Z Phys B 64: 189–193

    Article  CAS  Google Scholar 

  • Bendall MR, Gordon RE (1983) Depth and refocusing pulses designed fo multipulse NMR with surface coils. J Magn Reson 53: 365–385

    CAS  Google Scholar 

  • Bendall MR, Connelly A, McKendry JM (1986) Elimination of coupling between cylindrical transmit coils and surface-receive coils for in vivo NMR. Magn Reson Med 3: 157–163

    Article  PubMed  CAS  Google Scholar 

  • Berliner LJ, Fujii H (1985) Magnetic resonance imaging of biological specimens by paramagnetic resonance of nitroxide spin labels. Science 227: 517

    Article  PubMed  CAS  Google Scholar 

  • Berliner LJ, Fujii H, Wan X, Lukiewicz SJ (1987) Feasibility study of imaging a living murine tumor by electron paramagnetic resonance. Magn Reson Med 4: 380–384

    Article  PubMed  CAS  Google Scholar 

  • Bisese JH (1988) MRI: a teaching file approach. McGraw-Hill, New York

    Google Scholar 

  • Blackband SJ, Mansfield P (1986) Diffusion in liquid-solid systems by NMR imaging. J Phys C 19: 149-152

    Article  Google Scholar 

  • Blackband SJ, Mansfield P, Barnes JR, Clague ADH, Rice SA (1986) Discrimination of crude oil and water in sand and in bore cores with NMR imaging. SPE Formulation Evaluation: February

    Google Scholar 

  • Blackband SJ, McGrovern KA, McLennan IJ (1988) Spatially localized two-dimensional spectroscopy. SLO-COSY and SLO-NOESY. J Magn Reson 79: 184–189

    Google Scholar 

  • Bottomley PA (1981) A versatile magnetic-field gradient control system for NMR imaging. J Phys (E) 14: 1081–1087

    Google Scholar 

  • Bottomley PA (1985) Noninvasive studies of high energy phosphate metabolism in human heart by depth-resolved 31P NMR spectroscopy. Science 229: 769–772

    Article  PubMed  CAS  Google Scholar 

  • Bottomley PA, Andrew ER (1978) RF magnetic field penetration, phase shift and power dissipation in biological tissue: implications for NMR imaging. Phys Med Biol 23: 630

    Article  PubMed  CAS  Google Scholar 

  • Bottomley PA, Edelstein WA, Hart HR et al. (1984 a) In vivo 1H imaging fo the head at 1.5T. Magn Reson Med 1: 113

    Article  Google Scholar 

  • Bottomley PA, Foster TB, Darrow RD (1984b) Depth-resolved surface coil spectroscopy (DRESS) for in vivo 1H, 31P, and 31C NMR. J Magn Reson 59: 338–342

    CAS  Google Scholar 

  • Bottomley PA, Redington RW, Edelstein WA, Schenck JF (1985) Estimating radiofrequency power deposition in body NMR imaging. Magn Reson Med 2: 336–349

    Article  PubMed  CAS  Google Scholar 

  • Bottomley PA, Charles HC, Roemer PB, Flaming D, Engeseth H, Edelstein WA, Mueller OM (1988) Human in vivo phosphate metabolite imaging with 31P NMR. Magn Reson Med 7: 319–336

    Article  PubMed  CAS  Google Scholar 

  • Brown TR, Kincaid BM, Ugurbil K (1982) NMR chemical shift imaging in three dimensions. Proc Natl Acad Sci USA 79: 3523

    Article  PubMed  CAS  Google Scholar 

  • Brunner P, Ernst RR (1979) Sensitivity and performance time in NMR imaging. J Magn Reson 33: 83–106

    CAS  Google Scholar 

  • Chapman B, Turner R, Ordidge RJ et al. (1987) Real-time movie imaging from a single cardiac cycle by NMR. Magn Reson Med 5: 246–254

    Article  PubMed  CAS  Google Scholar 

  • Chingas GC, Milliken J, Resing HA, Tsang T (1985) Graphite-AsF5 intercalation kinetics and diffusion by NMR imaging. Synth Met 12: 1–2, 131

    Article  CAS  Google Scholar 

  • Chingas GC, MillerJB, Garroway AN (1986) NMR images of solids. J Magn Reson 66: 530–535

    CAS  Google Scholar 

  • Clark LC, Ackerman JL, Thomas SR, Millard RW (1984) High-contrast tissue and blood oxygen imaging based on fluorocarbon 19F NMR relaxation times. Magn Reson Med 1: 135

    Google Scholar 

  • Daniels DL, Haughton VM, Naidich TP (1987) Cranial and spinal magnetic resonance imaging. Raven, New York

    Google Scholar 

  • De Luca F, Maraviglia B (1986) Magic-angle NMR imaging in solids. J Magn Reson 67: 169–172

    Google Scholar 

  • Demsar F, Walczak T, Morse PD, Bacic G, Zolnai Zsolt Swartz HM (1988) Detection of diffusion and distribution of oxygen be fast-scan EPR imaging. J Magn Reson 76: 224–231

    CAS  Google Scholar 

  • Dickinson RJ, Hall AS, Hind AJ, Young IR (1986) Measurement of changes in tissue temperature using magnetic resonance imaging. J Comput Assist Tomogr 10: 468–472

    PubMed  CAS  Google Scholar 

  • Dixon WT (1984) Simple proton spectroscopy. Radiology 153: 189

    PubMed  CAS  Google Scholar 

  • Doyle M, Mansfield P (1987) Chemical-shift imaging: a hybrid approach. Magn Reson Med 5: 255–261

    Article  PubMed  CAS  Google Scholar 

  • Dumoulin CL, Hart HR (1986) Magnetic resonance angiography. Radiology 161: 717–720

    PubMed  CAS  Google Scholar 

  • Eaton SS, Eaton GR (1984) EPR imaging. J Magn Reson 59: 474

    CAS  Google Scholar 

  • Eccles CD, Callaghan PT (1986) High-resolution imaging. The NMR mircoscope. J Magn Reson 68: 393–398

    CAS  Google Scholar 

  • Edelman PR, Hahn PF, Buxton R, Wittenberg J, Ferrucci JT, Saini S, Brady TJ (1986) Rapid NMR imaging with suspenden respiration: clinical application in the liver. Radiology 161: 125

    PubMed  CAS  Google Scholar 

  • Edelstein WA, Hutchinson JMS, Johnson G, Redpath TW (1980) Spin warp NMR imaging and application to wholebody imaging. Phys Med Biol 25: 751–756

    Article  PubMed  CAS  Google Scholar 

  • Ernst RR, Bodenhausen G, Wokaun A (1987) Principles of nuclear magnetic resonance in one and two dimensions. Clarendon, Oxford

    Google Scholar 

  • Ferrar TC, Becker ED (1971) Pulse and Fourier transform NMR. Academic, New York

    Google Scholar 

  • Frahm J, Merboldt KD, Hanicke W (1987) Localized proton spectroscopy using stimulated echoes. J Magn Reson 72: 502

    CAS  Google Scholar 

  • Garroway AN, Granneil PK, Mansfield P (1974) Image formation in NMR by a selective irradiative process. J Phys C 7: L427–L462

    Article  Google Scholar 

  • Garroway AN, Baum J, Munowitz MG, Pines A (1984) NMR imaging in solids by multiple-quantum resonance. J Magn Reson 60: 337

    CAS  Google Scholar 

  • Ginsberg DM, Melchner MI (1970) Optimum geometry of saddle shaped coils for generating a uniform magnetic field. Rev Sci Instrum 41: 122

    Article  Google Scholar 

  • Golay MJE (1971) US Patent Number 3569523 and 3622869

    Google Scholar 

  • Granot J (1986) Selected volume spectroscopy (SVS) and chemical shift imaging. A comparison. J Magn Reson 66: 197–200

    CAS  Google Scholar 

  • Guilfoyle DN, Mansfield P (1985) Chemical shift imaging. Magn Reson Med 2: 479–489

    Article  PubMed  CAS  Google Scholar 

  • Gummerson RJ, Hall C, Hoff WD, Hawkes R, Holland GN, Moore WS (1979) Unsaturated water flow within porous materials observed by NMR imaging. Nature 281: 56

    Article  CAS  Google Scholar 

  • Gupta RK (1977) A new look at the method of variable nutation angle for the measurement of spin-lattice relaxation times using Fourier transform NMR. J Magn Reson 25: 231

    CAS  Google Scholar 

  • Haase A, Frahm J, Matthaei D, Hanicke W, Merboldt KD (1986) FLASH imaging. Rapid NMR imaging using low flip-angle pulses. J Magn Reson 67: 258

    CAS  Google Scholar 

  • Hall LD, Sukumar S (1982) Chemical microscopy using a high-resolution NMR spectrometer. A combination of tomography/spectroscopy using either 1H or 13C. J Magn Reson 50: 161

    CAS  Google Scholar 

  • Hall LD, Talagala SL (1985) Mapping of pH and temperature distribution using chemical-shift-resolved tomography. J Magn Reson 65: 501–505

    CAS  Google Scholar 

  • Hall LD, Rajanayagam V (1987) Thin-slice, chemical-shift imaging of oil and water in sandstone rock at 80 MHz. J Magn 74: 139–146

    CAS  Google Scholar 

  • Hall LD, Rajanayagam V, Hall C (1986) Chemical-shift imaging of water and n-dodecane in sedimentary rocks. J Magn Reson 68: 185–188

    CAS  Google Scholar 

  • Hall AS, Barnard B, McArthur P, Gilderdale DJ, Young IR, Bydder GM (1988) Investigation of a whole-body receiver coil operating at liquid nitrogen temperatures. Magn Reson Med 7: 230–235

    Article  PubMed  CAS  Google Scholar 

  • Hayes CE, Edelstein WA, Schenck JF, Meuller OM, Eash MJ (1985) An efficient, highly homogeneous radiofrequency coil for whole-body NMR imaging at 1.5 t. J Magn Reson 63: 622

    CAS  Google Scholar 

  • Hinshaw WS (1974) Spin mapping: the application of moving gradients to NMR. Phys Lett 48A: 87–88

    Google Scholar 

  • Hinshaw WS, Bottomley PA, Holland GN (1977) Radiographic thin-section image of the human wrist by nuclear magnetic resonance. Nature 270: 722

    Article  PubMed  CAS  Google Scholar 

  • Hore PJ (1983) Solvent suppression in Fourier transform nuclear magnetic resonance. J Magn Reson 55: 283–300

    CAS  Google Scholar 

  • Hoult DI, Richards RE (1976) The signal-to-noise ratio of the nuclear magnetic resonance experiment. J Magn Reson 24: 71–85

    Google Scholar 

  • Johnson GA, Thompson MB, Gewalt SL, Hayes CE (1986) Nuclear magnetic resonance imaging at microscopic resolution. J Magn Reson 68: 129

    CAS  Google Scholar 

  • Joseph PM, Fishman JE, Mukherji, Sloviter HA (1985) In vivo 19F NMR imaging of the cardiovascular system. J Comput Assist Tomogr 9: 1012–1019

    Article  PubMed  CAS  Google Scholar 

  • Kormos DW, Yeung HN, Gauss RC (1987) NMR imaging of carbon-13. J Magn Reson 71: 159–162

    CAS  Google Scholar 

  • Kressel HY (1985) Magnetic resonance annual. Raven, New York

    Google Scholar 

  • Kumar A, Welti D, Ernst RR (1975) NMR fourier zeugmatography. J Magn Reson 18: 69–83

    CAS  Google Scholar 

  • Lauterbur PC (1973) Image formations by induced local interactions: examples exploying nuclear magnetic resonance. Nature 242: 190–191

    Article  CAS  Google Scholar 

  • Lauterbur P (1974) Magnetic resonance zeugmatography. Pure Appl Chem 40: 149

    Article  CAS  Google Scholar 

  • Lauterbur P (1984) Spectroscopic imaging of microscopic objects. IEEE Trans Nucl Sci NA-31: 4

    Google Scholar 

  • Leroy-Willig A, Darrasse L, Taquin J, Sauzade M (1985) The slotted cylinder: an efficient probe for NMR imaging. Magn Reson Med 2: 20–28

    Article  PubMed  CAS  Google Scholar 

  • Lurie DJ, Bussel DM, Bell LH, Mallard JR (1988) Proton-electron double magnetic resonance imaging of free radical solutions. J Magn Reson 76: 366–370

    CAS  Google Scholar 

  • Luyten PR, Marien AJH, Sijtsma B, den Hollander JA (1986) Solvent-suppressed spatially resolved spectroscopy. An approach to high-resolution NMR on a whole-body MR system. J Magn Reson 67: 148

    CAS  Google Scholar 

  • Mansfield P (1984) Spatial mapping of the chemical shift in NMR. Magn Reson Med 1: 370–386

    Article  PubMed  CAS  Google Scholar 

  • Mansfield P, Grannell P (1975) Diffraction and microscopy in solids and liquids by NMR. Phys Rev B 12: 3629

    Article  Google Scholar 

  • Mansfield P, Pykett IL (1978) Biological and medical imaging by NMR. J Magn Reson 29: 355

    Google Scholar 

  • Mansfield P, Morris PG (1982) NMR imaging in biomedicine. Adv Mag Res, Suppl 2. Academic, New York

    Google Scholar 

  • Mansfield P, Chapman B (1986) Active magnetic screening of coils for static and time dependent magnetic field generation in NMR imaging. J Phys E 19: 540

    Article  Google Scholar 

  • Mansfield P, Chapman B (1987) Multishield active magnetic screening of coil structures in NMR. J Magn Reson 72: 211–223

    Google Scholar 

  • Maudsley AA, Hilal SK, Perman WH, Simon HE (1983) Spatially resolved high resolution spectroscopy by “four-dimensional” NMR. J Magn Reson 51: 147

    CAS  Google Scholar 

  • Maudsley AA, Hilal SK (1984) Biological aspects of sodium-23 imaging. Br Med Bull 40: 165–167

    PubMed  CAS  Google Scholar 

  • Maudsley AA, Hilal SK, Simon HE, Wittekoek S (1984) In vivo MR sprectroscopic imaging with P-31. Radiology 153: 745

    PubMed  CAS  Google Scholar 

  • Meyer RA, Brown TR (1988) Diffusion measurements by microscopic NMR imaging. J Magn Reson 76: 393–399

    CAS  Google Scholar 

  • Moran PR (1982) A flow velocity zeugmatographic interlace for NMR imaging in humans. Magn Reson Imaging 1: 197–203

    Article  PubMed  Google Scholar 

  • Morris PG (1986) Nuclear magnetic resonance imaging in medicine and biology. Clarendon, Oxford

    Google Scholar 

  • Muller S, Seelig J (1987) In vivo NMR imaging of deuterium. J Magn Reson 72: 456–466

    Google Scholar 

  • Nunnally RL, Babock EE, Horner SD, Peshock RM (1985) Fluorine-19 NMR spectroscopy and imaging investigations of myocardial perfusion and cardiac function. Magn Reson Imaging 3: 399

    Article  PubMed  CAS  Google Scholar 

  • Ordidge RJ, Connelly A, Lohman JAB (1986) Image-selected in vivo spectroscopy (ISIS). A new technique for spatially selective NMR spectroscopy. J Magn Reson 66: 283–294

    CAS  Google Scholar 

  • Ordidge RJ, Coxon R, Howseman A, Chapman B, Turner R, Stehling M, Mansfield P (1988) Snapshot head imaging at O · 5 T using the echo planar technique. Magn Reson Med 8: 110–115

    Article  PubMed  CAS  Google Scholar 

  • Park HW, Cho ZH (1986) High-resolution human in vivo spectroscopic imaging using echo-time encoding technique. Magn Reson Med 3: 448–453

    Article  PubMed  CAS  Google Scholar 

  • Parker DL, Smith V, Sheldon P, Crooks LE, Russel L (1983) Temperature distribution measurements in two dimensional NMR imaging. Med Phys 10: 321–325

    Article  PubMed  CAS  Google Scholar 

  • Pool R (1988) New superconductors come through. Science 240: 1613–1615

    Article  PubMed  CAS  Google Scholar 

  • Pykett IL, Rzedzian PR (1987) Instant images of the body by magnetic resonance. Magn Reson Med 5: 563–571

    Article  PubMed  CAS  Google Scholar 

  • Ra JB, Hilal SK, Cho ZH (1986) A method for in vivo MR imaging of the short T2 component of sodium-23. Magn Reson Med 3: 296–302

    Article  PubMed  CAS  Google Scholar 

  • Ra JB, Hilal SK, Oh CH, Mun IK (1988) In vivo magnetic resonance imaging of sodium in the human body. Magn Reson Med 7: 11–22

    Article  PubMed  CAS  Google Scholar 

  • Radda GK (1986) The use of NMR spectroscopy for the understanding of disease. Science 233: 640–645

    Article  PubMed  CAS  Google Scholar 

  • Ratner AV, Hurd R, Muller HH et al. (1987) 19F magnetic resonance imaging of the reticuloendothelial system. Magn Reson Med 5: 548–554

    Article  PubMed  CAS  Google Scholar 

  • Renshaw PF, Haselgrove JC, Leigh JS, Chance B (1985) In vivo nuclear magnetic resonance imaging of lithium. Magn Reson Med 2: 512–516

    Article  PubMed  CAS  Google Scholar 

  • Rothwell WP, Holecek DR, Kershaw JA (1984) NMR imaging; study of fluid absorption by polymer composites. JAJ Polym Sci Polym Lett 22: 241

    Article  CAS  Google Scholar 

  • Rzedzian R, Mansfield P, Doyle M et al. (1983) Real-time nuclear magnetic resonance clinical imaging in paediatrics. Lancet II: 1281–1282

    Article  Google Scholar 

  • Schneider HJ, Dullenkopf P (1977) Slotted tube resonator: a new NMR probe head at high observing frequencies, Rev Sci Instrum 48: 68–73

    Article  Google Scholar 

  • Schultz CL, Alfidi RJ, Nelson AD, Koppiwoda SY, Clampitt ME (1984) The effect of motion on two-dimensional Fourier transformation magnetic resonance images. Radiology 152: 117

    PubMed  CAS  Google Scholar 

  • Slichter CP (1978) Principles of magnetic resonance. Springer, New York

    Google Scholar 

  • Stark DD, Bradley WG (1988) Magnetic resonance imaging. 1st edn. C.V. Mosby, St. Lois

    Google Scholar 

  • Stejskal EO, Tanner JE 81965) Spin diffusion measurements: spin echoes in the presence of a time-depentent field gradient. J Chem Phys 42: 288

    Article  CAS  Google Scholar 

  • Styles P, Soffe NF, Scott CA, Cragg A, White DJ, White PCJ (1984) A high-resolution NMR probe in which the coil and preamplifier are cooled with liquid helium. J Magn Reson 60: 397–404

    CAS  Google Scholar 

  • Szeverenyi NM, Maciel GE (1984) NMR spin imaging of magnetically dilute nuclei in the solid state. J Magn Reson 60: 460–466

    CAS  Google Scholar 

  • Tanner IE (1965) Pulsed field gradients for NMR spin echo diffusion measurements. Rev Sci Instrum 36: 1086

    Article  CAS  Google Scholar 

  • Turner R (1985) Optical reconstruction of NMR images. Proc of the Fourth Meeting of the Soc Magn Reson Med, London, pp 1262–1263

    Google Scholar 

  • van der Muelen P, Groen JP, Cuppen JJM (1985) Very fast MR imaging by field echoes and small angle excitation. Magn Reson Imaging 3: 297

    Article  Google Scholar 

  • Voss DF (1988) Superconductivity: The FAX factor. Science 240: 280–281

    Article  PubMed  CAS  Google Scholar 

  • Wehrli FW, MacFall JR, Azel L (1984) Approaches to inplane and out-of-plane flow imaging. Noninvasive Med Imaging 2: 127–136

    Google Scholar 

  • Wertz JE, Bolton JR (1972) Electron spin resonance; elementary theory and applications. McGraw-Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blackband, S.J. (1989). NMR Imaging: An Appraisal of the Present and the Future. In: Anderson, J.H. (eds) Innovations in Diagnostic Radiology. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83413-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83413-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83415-8

  • Online ISBN: 978-3-642-83413-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics