Skip to main content

Part of the book series: UICC International Union Against Cancer ((UICCI))

  • 110 Accesses

Abstract

The impact of cancer chemotherapy on the survival of all cancer patients has been significant, most notably in younger patients. The list of diseases curable with chemotherapy includes acute lymphocytic leukemia, adult Hodgkin’s disease, non-Hodgkin’s lymphomas of adults and children, pediatric solid tumors, ovarian cancer, and testicular cancer in young males [1]. Other tumors, such as adult leukemias, breast cancer, and small-cell lung cancer, are highly responsive to combination chemotherapy, but permanent remissions are achived in few of these patients. Unfortunately, these chemotherapy-responsive tumors will eventually reoccur in some patients. Although second remissions in patients with diseases such as Hodgkin’s disease, acute leukemia, and testicular cancer can be achieved with salvage chemotherapy, relapses in most cancer patients are associated with development of drug resistance and lack of durable second remissions. Understanding the mechanisms involved in the development of clinical drug resistance is essential for the design of rational, effective salvage therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DeVita VT Jr (1982) Principles of chemotherapy. In: DeVita VT Jr, Hellman S, Rosenberg SA (eds) Cancer: principles and practice of oncology. JB Lippincott, Philadelphia, pp 132–155

    Google Scholar 

  2. Adams DJ, Carmichael J, Wolf CR (1985) Altered mouse bone marrow glutathione and glutathione transferase levels in response to cytotoxins. Cancer Res 45: 1669–1673

    PubMed  CAS  Google Scholar 

  3. Zimm S, Collins JM, Riccard R, O’Neill D, Narang PK, Chabner BA, Poplack DG (1983) Variable bioavailability of oral mercaptopurine: In maintenance chemotherapy in acute lymphoblastic leukemia being optimally delivered. N Engl J Med 308: 1005–1009

    Google Scholar 

  4. Tattersall MHN, Weinberg A (1978) Pharmacokinetics of melphalan following oral or intravenous administration in patients with malignant disease. Eur J Cancer 14: 502–509

    Google Scholar 

  5. Alberts DS, Chang SY, Chen H-SG et al. (1980) Comparative pharmacokinetics of chlorambucil and melphalan in man. Recent Results Cancer Res 74: 124–130

    Article  PubMed  CAS  Google Scholar 

  6. D’Incalci M, Bolis G, Mangioni C et al. (1978) Variable absorption of hexamethylamine in man. Cancer Treat Rep 62: 2117–2119

    PubMed  Google Scholar 

  7. Goldie JH, Coldman AJ (1979) A mathematical model formulating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat Rep 63: 1727–1733

    PubMed  CAS  Google Scholar 

  8. Luria SE, Delbruck M, (1943) Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28: 491–511

    PubMed  CAS  Google Scholar 

  9. Bech-Hanson NT, Till JE, Ling V (1976) Pleiotropic phenotype of colchicine-resistant CHO cells: Cross resistance and collateral sensitivity. J Cell Physiol 88: 22–23

    Google Scholar 

  10. Kessel D, Hall TC, Roberts D (1965) Uptake as a determinant of methotrexate response in mouse leukemia. Science 150: 752–754

    Article  PubMed  CAS  Google Scholar 

  11. Harrap KR, Hill BT, Furness ME et al. (1971) Sites of action of amethopterin: intrinsic and acquired drug resistance. Ann NY Acad Sci 186: 312–324

    Article  PubMed  CAS  Google Scholar 

  12. Hill BT, Bailey BD, White JC et al. (1979) Characteristics of transport of 4-amino folates and folate compounds of two lines of LY178Y lymphosblasts, one with impaired transport of methotrexate. Cancer Res 39: 2440–2446

    PubMed  CAS  Google Scholar 

  13. Ohnoshi T, Ohnuma T, Takehasi I et al. (1982) Establishment of methotrexate-resistant human acute lymphoblastic leukemia cell in culture and effects of folate antagonists. Cancer Res 42: 1655–1660

    PubMed  CAS  Google Scholar 

  14. Sirotnak FM, Moccio DM, Kelleher LE et al. (1981) Relative frequency and kinetic properties of transport defective phenotypes among methotrexate-resistant L1210 clonal cell lines derived in vivo. Cancer Res 14, 4447–4452

    Google Scholar 

  15. Redwood WR, Colvin M (1980) Transport of melphalan by sensitive and resistant L1210 cells. Cancer Res 40: 1144–1149

    PubMed  CAS  Google Scholar 

  16. Goldenberg GJ, Vanstom CL, Israels LG et al. (1970) Evidence for transport carrier of nitrogen mustard in nitrogen mustard-sensitive and -resistant L5178Y lymphoblasts. Cancer Res 30: 2285–2291

    PubMed  CAS  Google Scholar 

  17. Dano K (1973) Active outward transport of daunomycin in resistant Ehrlich ascites tumor cells. Biochim Biophys Acta 323: 466–473

    Article  PubMed  CAS  Google Scholar 

  18. Skovsgaard T (1978) Mechanism of cross resistance between vincristine and daunorubicin in Ehrlich ascites tumor cells. Cancer Res 38: 4622–4727

    Google Scholar 

  19. Juliano RL, Ling V (1976) A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochims Biophys Acta. 455: 152–162

    Article  CAS  Google Scholar 

  20. Cowan KH, Jolivet J (1984) A methotrexate-resistant human breast cancer cell line with multiple defects, including diminished formation of methotrexate polyglutamates. J Biol Chem 259: 10793–10800

    PubMed  CAS  Google Scholar 

  21. Suzukake K, Vistica BP, Vistica DT (1983) Dechlorination of L-phenylalanine mustard by sensitive and resistant tumor cells and its relationship to intracellular glutathione content. Biochem Pharmacol 32: 165–167

    Article  PubMed  CAS  Google Scholar 

  22. Endreson L, Bakka A, Rugstad HE (1983) Increased resistance to chlorambucil in cultured cells with a high concentration of cytoplasmic metallothionein. Cancer Res 43: 2918–2926

    Google Scholar 

  23. Sibley CH, Thompkins GM (1974) Mechanisms of steroid resistance. Cell 2: 221–227

    Article  PubMed  CAS  Google Scholar 

  24. Nawata H, Bronzert D, Lippman ME (1983) Isolation and characterization of a tamoxifenresistant cell line derived form MCF-7 human breast cancer cells. J Biol Chem 256: 5016–05021

    Google Scholar 

  25. Ling V, Aubin JE, Chase A et al. (1979) Mutants of Chinese hamster ovary ( CHO) cells with altered colcemid-binding affinity. Cell 18: 423–430

    Google Scholar 

  26. Cabral F, Sobel ME, Gottesman MM (1980) CHO mutants resistant to colchicine, colcemid or griseofulvin have altered beta-tubulin. Cell 20: 29–36

    Article  PubMed  CAS  Google Scholar 

  27. Keates RAB, Sarangi F, Ling V (1981) Structural and functional alteration in microtubule protein from Chinese hamster ovary cell mutants. Proc Natl Acad Sci USA 78: 5638–5642

    Article  PubMed  CAS  Google Scholar 

  28. Heidelberger C, Kaldor G, Mukherjeek L et al. (1960) Studies on flourinated pyrimidines: XI. In vitro studies on tumor resistance. Cancer Res 20: 903–909

    Google Scholar 

  29. Pommier Y, Schwartz RE, Zwelling LA et al. (1986) Reduced formation of protein associated DNA strand breaks in Chinese hamster cells resistant to Topoisomerase II inhibitors. Cancer Res 46: 611–616

    PubMed  CAS  Google Scholar 

  30. Pommier Y, Kerrigan D, Schwartz RE et al. (1986) Altered DNA Toposiomerase II activity in Chinese hamster cells resistant to Toposiomerase II inhibitors. Cancer Res 46: 3075–3081

    PubMed  CAS  Google Scholar 

  31. Kimiko I, Sartorelli AC (1984) Altered 5-phosphoribosyl 1-pyrophosphate amidotransferase activity in 6-thioguanine resistant HL60 promyelocytic leukemia cells. Cancer Res 44: 36793685

    Google Scholar 

  32. Houghton JA, Maroda SJ, Phillips JO et al. (1982) Biochemical determinants of responsiveness to 5-fluorouracil and its derivatives in xenografts of human colorectal adenocarcinomas in mice. Cancer Res 42: 144–149

    Google Scholar 

  33. Bruckner HW, Rustum YM (eds) (1984) Proceedings of a symposium on the current status of 5-fluorouracil-leucovorin calcium combination. Advances in cancer chemotherapy. NY

    Google Scholar 

  34. Crawthorne AR, Roberts JJ (1966) Mechanisms of the cytotoxic action of alkylating agents in mammalian cells and evidence for the removal of alkylated groups from deoxyribonucleic acid. Nature 211: 150–153

    Article  Google Scholar 

  35. Parsons PG, Smellie SG, Manson LE et al. (1982) Properties of human melanoma cells resistant to 5- (3’, 3’-dimethyl-l-trazeno) imidazole-4-carboxamide and other methylating agents. Cancer Res 42: 1454–1461

    PubMed  CAS  Google Scholar 

  36. Carr FJ, Fox BW (1981) DNA strand breaks and repair synthesis in Yoshida sarcoma cells with differential sensitivities to bifunctional alkylating agents and UV light. Mutat Res 83: 233–249

    PubMed  CAS  Google Scholar 

  37. Bedford P, Fox BW (1982) Repair of DNA interstrand cross links after busulphan. A possible mode of resistance. Cancer Chemother Pharmacol 8: 3–7

    Google Scholar 

  38. Alt FW, Keller RE, Bertino JR, Schimke RT (1978) Multiplication of dihydrofolate reductase genes in methotrexate-resistant variants of cultured murine cells. J Biol Chem 253: 1357–1370

    PubMed  CAS  Google Scholar 

  39. Biedler JL, Spengler BA (1976) Metaphase chromosome anomaly: association with drug resistance and cell specific products. Science 191: 185–187

    Article  PubMed  CAS  Google Scholar 

  40. Nuberg JH, Kaufman RJ, Schimke RT, Urlaub, Chasin L, (1978) Amplified dihydrofolate reductase genes are localized to a homogeneously staining region of a single chromosome in a methotrexate-resistant Chinese hamster ovary cell line. Proc Natl Acad Sci USA 75: 5553–5556

    Article  Google Scholar 

  41. Brown PC, Beverly SM, Schimke RT (1981) Relationship of amplified dihydrofolate reductase genes to double minute chromosomes in unstably resistant cell lines. Mol Cell Biol 1: 10771083

    Google Scholar 

  42. Wahl GM, Padgett RA, Stark GR (1979) Gene amplification causes overproduction of the first three enzymes of UMP synthesis in N-(phosphoracetyl)-L-aspartate-resistant hamster cells. J Biol Chem 254: 8679–8689

    PubMed  CAS  Google Scholar 

  43. Beach LR, Palmiter RD (1981) Amplification of the metallothionein-1 gene in cadmium-resistant mouse cells. Proc Natl Acad Sci USA 78: 2110–2114

    Article  PubMed  CAS  Google Scholar 

  44. Bakka A, Endresen L, Johnson ABS et al. (1981) Resistance against cis-dichlorodiammineplatinum in cultured cells with a high content of metallothionein. Toxicol Appl Pharmacol 61: 215–226

    Article  PubMed  CAS  Google Scholar 

  45. Riordan JR, Deuchars K, Kartner N, Alon N, Trent J, Ling V (1985) Amplification of Pglycoprotein genes in multidrug resistant cell lines by monoclonal antibodies. Nature 316: 817819

    Google Scholar 

  46. Roninson IB (1983) Detection and mapping homologous, repeated, amplified DNA sequences by DNA renaturation in agarose gels. Nucleic Acid Res 11: 5413–5431

    Article  PubMed  CAS  Google Scholar 

  47. Gros P, Croop J, Roninson I et al. (1986) Isolation and characterization of DNA sequences amplified in multidrug-resistant hamster cells. Proc Natl Acad Sci USA 83: 337–341

    Article  PubMed  CAS  Google Scholar 

  48. Fojo AT, Whang-Peng J, Gottesman MM et al. (1985) Amplification of DNA sequences in human multidrug-resistant KB carcinoma cells. Proc Natl Acad Sci USA 82: 7661–7665

    Article  PubMed  CAS  Google Scholar 

  49. Scotto KW, Biedler JL, Melera PW (1986) Amplification and expression of genes associated with multidrug resistance in mammalian cells. Science 232: 751–755

    Article  PubMed  CAS  Google Scholar 

  50. Van der Bliek AM, Van der Velde-Koerts T, Ling V et al. (1986) The overexpression and amplification of five genes in a multidrug-resistant Chinese hamster ovary cell line. Mol Cell Biol 6: 1671–1678

    PubMed  Google Scholar 

  51. Fairchild CR, Ivy SP, Kao-Shan C-S, Whang-Peng J, Rosen N, Israel MA, Melera PW, Cowan KH, Goldsmith ME (1987) Isolation of amplified DNA sequences associated with pleiotropic drug resistance from human breast cancer cells. Cancer Res 47: 5141–5148

    PubMed  CAS  Google Scholar 

  52. Curt GA, Carney DM, Cowan KH, Jolivet J, Bailey BD, Drake JC, Kao-Shan CW, Minna JD, Chabner BA (1983) Unstable methotrexate resistance in human small cell carcinoma associated with double minute chromosomes. N Engl J Med 308: 199–202

    Article  PubMed  CAS  Google Scholar 

  53. Trent JM, Buick RM, Olson S, Horns DC, Schimke RT (1984) Cytologic support for gene amplification in methotrexate-resistant cells obtained from a patient with ovarian adenocarcinoma. J Clin Oncol 2: 8–15

    PubMed  CAS  Google Scholar 

  54. Horns RC, Dower WJ, Schimke RT (1984) Gene amplification in a leukemic patient treated with methotrexate. J Clin Oncol 2: 1–7

    Google Scholar 

  55. Cardman MD, Schornagel JH, Rivest RS, Srimatkandada S, Portlock CS, Duffy T, Bertino JR (1984) Resistance to methotrexate due to gene amplification in a patient with acute leukemia. J Clin Oncol 2: 16–20

    Google Scholar 

  56. Gros P, Croop J, Housman D (1986) Mammalian multidrug resistant gene: Complete cDNA sequence indicates strong homology to bacterial transport proteins. Cell 47: 371–380

    Google Scholar 

  57. Chen C-J, Chen JE, Ueda K, Clark DP, Pastan I, Gottesman MM, Roninson IB (1986) Internal duplication and homology with bacterial transport proteins in the mdr 1 ( P glycoprotein) gene from multidrug resistant human cells. Cell 47: 381–389

    Google Scholar 

  58. Cornwell MM, Safa AR, Felsted RL et al. (1986) Membrane vesicles from multidrug-resistant human cancer cells contain a specific 150–170 kDa protein detected by photoaffinity labeling. Proc Natl Acad Sci USA 83: 3847–3850

    Article  PubMed  CAS  Google Scholar 

  59. Safa AR, Glover CJ, Meyers MB et al. (1986) Vinblastine photoaffinity labeling of a high molecular weight surface membrane glycoprotein specific for multidrug-resistant cells. J Biol Chem 261: 6137–6140

    PubMed  CAS  Google Scholar 

  60. Gros P, Neriah YB, Croop JM et al. (1986) Isolation and expression of the complementary DNA that confers multidrug resistance. Nature 323: 728–731

    Article  PubMed  CAS  Google Scholar 

  61. Kessel D, Corbett T (1985) Correlation between anthracycline resistance, drug accumulation and membrane glycoprotein patterns in solid tumors of mice. Cancer Lett 28: 187–193

    Article  PubMed  CAS  Google Scholar 

  62. Sirotnak FM, Yang CH, Mines LS et al. (1986) Markedly altered membrane transport and intracellular binding of vincristine in multidrug-resistant Chinese hamster cells selected for resistance to vinca alkaloids. J Cell Physiol 126: 266–274

    Article  PubMed  CAS  Google Scholar 

  63. Siegfried JM, Tritton TR, Sartorelli AC (1983) Comparison of anthracycline concentrations in S180 cell lines of varying sensitivity. Eur J Cancer Clin Oncol 19: 1133–1137

    Article  PubMed  CAS  Google Scholar 

  64. Beidler JL, Peterson HF (1981) In: Molecular actions and targets for cancer chemotherapeutic agents. Academic Press, New York, pp 453–482

    Google Scholar 

  65. Meyers MB, Biedler JL (1981) Increased synthesis of a low molecular weight protein in vincristine-resistant cells. Biochem Biophys Res Commun 99: 228–235

    Article  PubMed  CAS  Google Scholar 

  66. Peterson RHF, Biedler JL (1978) Plasma membrane proteins and glycoproteins from Chinese hamster cells sensitive and resistant to Actinomycin D. J Supramol Struct 9: 289–298

    Article  PubMed  CAS  Google Scholar 

  67. Beck WT (1983) Vinca alkaloid-resistant phenotype in cultured human leukemia lymphoblasts. Cancer Treat Rep 67: 875–882

    PubMed  CAS  Google Scholar 

  68. Beck WT, Mueller TJ, Tanser LR (1979) Altered surface membrane glycoproteins in vinca alkaloid resistant human leukemia lymphoblasts. Cancer Res 39: 2070–2076

    PubMed  CAS  Google Scholar 

  69. Peterson PHF, Meyers MB, Spengler BA, Biedler JL (1983) Alteration of plasma membrane glycopeptides and gangliosides of Chinese hamster cells accompanying development of resistance to daunorubicin and vincristine. Cancer Res 43: 222–228

    PubMed  CAS  Google Scholar 

  70. Farber E (1984) Cellular biochemistry of the stepwise development of cancer with chemicals: GHA Clowes Memorial Lecture. Cancer Res 44: 5463–5474

    PubMed  CAS  Google Scholar 

  71. Farber E, Parker S, Gruenstein M (1976) The resistance of putative premalignant liver cell populations, hyperplastic nodules, to the acute cytotoxic effects of some hepatocarcinogens. Cancer Res 36: 3839–3887

    Google Scholar 

  72. Roomi MW, Ho RK, Sarma DSR, Farber E (1985) A common biochemical pattern in preneoplastic hepatocyte nodules generated in four different models in the rat. Cancer Res 45: 564571

    Google Scholar 

  73. Sato K, Kitahara A, Satoh K et al. (1984) The placental form of glutathione S-transferase as a new marker protein for pre-neoplasia in rat chemical hepatocarcinogenesis. Gann 75: 199–202

    PubMed  CAS  Google Scholar 

  74. Kitahara A, Satoh K, Nishimura K et al. (1984) Changes in molecular forms of rat hepatic glutathione S-transferase during chemical hepatocarcinogenesis. Cancer Res 44: 2698–2703

    PubMed  CAS  Google Scholar 

  75. Burchall B: Identification and purification of multiple forms of UDP-Glucuronyl Transferase. In: Hodgson E, Bond JR, Philpot RM (eds) Reviews in biochemical toxicology, vol 3 Elsevier/ North Holland, New York, pp 1–32

    Google Scholar 

  76. Cowan KH, Batist G, Tupule A, Sinha BK, Myers CE (1986) Similar biochemical changes associated with multidrug resistance in human breast cancer cells and carcinogen induced resistance to xenobiotics in rats. Proc Natl Acad Sci USA 83: 9328–9332

    Article  PubMed  CAS  Google Scholar 

  77. Batist G, Tupule A, Sinha BK et al. (1986) Overexpression of a novel anionic glutathione transferase in multidrug-resistant human breast cancer cells. J Biol Chem 261: 15544–15549

    PubMed  CAS  Google Scholar 

  78. Batist G, deMuys J-M, Cowan KH et al. (1986) Purification of a novel gluathione-S-transferase in multidrug resistant human breast cancer cells. Proc Am Assoc Cancer Res 27: 1072

    Google Scholar 

  79. Myers CE, Cowan KH, Sinha BK, Chabner BA (1987) The phenomenon of pleiotropic drug resistance. In: DeVita VT, Hellman S, Rosenberg SA (eds) Important advances in oncology. J.B. Lippincott, Philadelphia, pp 27–38

    Google Scholar 

  80. Tupule A, Batist G, Sinha BK et al. (1986) Similar biochemical changes associated with pleiotropic drug resistance in human breast cancer cells and xenobiotic resistance induced in carcinogens. Proc Am Assoc Cancer Res 27: 1076

    Google Scholar 

  81. Fairchild CR, Ivy SP, Rushmore T, Farber E, Cowan KH (1987) unpublished data

    Google Scholar 

  82. Varshaysky A (1981) Phorbol ester dramatically increases incidence of methotrexate-resistant mouse cells; possible mechanisms and relevance to tumor promotion. Cell 25: 561–572

    Article  Google Scholar 

  83. Schimke RT (1984) Gene amplification, drug resistance, and cancer. Cancer Res 44: 1735–1742

    PubMed  CAS  Google Scholar 

  84. Tlsty TD, Brown PC, Schimke RT (1982) Enhancement of methotrexate resistance and dihydrofolate reductase gene amplification by treatment of mouse 3T6 mouse cells with hydroxyurea. Mol Cell Biol 3: 1097–1107

    Google Scholar 

  85. Barsoum J, Varshaysky A (1983) Mitogenic hormones and tumor promoters greatly increase the incidence of colony-forming cells bearing amplified dihydrofolate reductase genes. Proc Natl Acad Sci USA 80: 5330–5334

    Article  PubMed  CAS  Google Scholar 

  86. Snapka RM, Varshaysky A (1983) Loss of unstably amplified dihydrofolate reductase genes from mouse cells is greatly accelerated by hydroxyurea. Proc Natl Acad Sci USA 80: 7533–7537

    Article  PubMed  CAS  Google Scholar 

  87. Tsuruo T, Iida H, Tsukagoshi S, Sakarai Y (1981) Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res 41: 1967–1972

    PubMed  CAS  Google Scholar 

  88. Slater LM, Murray SL, Wetzel MW (1982) Verapamil restoration of daunorubicin responsiveness in daunorubicin-resistant Enrlich ascites carcinoma. J Clin Invest 70: 1131–1134

    Article  PubMed  CAS  Google Scholar 

  89. Kessel D, Wilberding C (1984) Mode of action of calcium antagonists which alter anthracycline resistance. Biochem Pharmacol 33: 1157–1160

    Article  PubMed  CAS  Google Scholar 

  90. Cornwell MM, Gottesman MM, Pastan IH (1986) Increased vinblastine binding to membrane vesicles from multidrug resistant KB cells. J Biol Chem 261: 7921–7928

    PubMed  CAS  Google Scholar 

  91. Tsuruo T, Iida H, Kawabata H, Bukagoshi S, Sakarai Y (1984) High calcium content of pleiotropic drug resistant P388 and K562 leukemia and Chinese hamster ovary cells. Cancer Res 44: 5095–5099

    PubMed  CAS  Google Scholar 

  92. Frishman W, Kirsten E, Klein M, Pine M, Johnson SM, Hillis LD, Packer M, Kates R (1982) Clinical relevance of verapamil plasma levels in stable angina pectoris. Am J Cardiol 50: 11801184

    Google Scholar 

  93. McGoon MD, Vlietstra RE, Holmes DR, Osborn JE (1982) The clinical use of verapamil. Mayo Clin Proc 57: 495–510

    PubMed  CAS  Google Scholar 

  94. Benson AB III, Koeller JM, Trump DC, Egorin M, Olman E, Witte RS, Davis TE, Tormey DC (1984) A phase I study and pharmacokinetics of vinblastine (VLB) and verapamil ( VPL) given by concurrent intravenous infusion. Proc Am Assoc Cancer Res 25: 162

    Google Scholar 

  95. Ozols RF, Rogan AM, Hamilton TC, Klecker R, Young RC (1984) Verapamil plus adriamycin in refractory ovarian cancer: Design of a clinical trial on the basis of reversal of adriamycin resistance in human ovarian cancer cell lines. Proc Am Assoc Cancer Res 25: 300

    Google Scholar 

  96. Rogan AM, Hamilton TC, Young RC, Klecker RW, Ozols RF (1984) Reversal of adriamycin resistance by verapamil in human ovarian cancer. Science 224: 994–996

    Article  PubMed  CAS  Google Scholar 

  97. Rabkin SW, Otten M, Polimeni PT (1983) Increased mortality with cardiotoxic doses of adriamycin after verapamil pretreatment despite prevention of myocardial calcium accumulation. Can J Physiol Pharmacol 61: 1050–1056

    Article  PubMed  CAS  Google Scholar 

  98. Klugman S, Bartoli-Klugman F, Decorti G, Silvestri F, Camerini F (1981) Adriamycin experimental cardiomyopathy in Swiss mice: Different effects of two calcium antagonistic drugs on ADM-induction of cardiomyopathy. Pharmacol Res Commun 13: 769–776

    Google Scholar 

  99. Biaglow JE, Varnes ME (1983) The role of thiols in cellular response to radiation and drugs. Radiat Res 95: 437–455

    Article  PubMed  CAS  Google Scholar 

  100. Biaglow JE, Clark ER, Morsequadio MM, Varnes ME, Mitchell JB (1983) Non protein thiols and the radiation response of A549 human lung carcinoma cells. Int J Radiat Biol 44: 489–495

    Article  CAS  Google Scholar 

  101. Bump EA, Yu NY, Brown MJ (1982) Radiosensitization of hypoxic tumor cells by depletion of intracellular glutathione. Science 217: 544–545

    Article  PubMed  CAS  Google Scholar 

  102. Russo A, Mitchell JB (1985) Potentiation and protection of doxorubicin cytotoxicity by cellular glutathione modulation. Cancer Treat Rep 69: 1293–1296

    PubMed  CAS  Google Scholar 

  103. Hirano I, Kachi H, Ohashi (1962) Mechanisms of natural and acquired resistance to methyl-bis(2-chloroethyl) amine-N-oxide in ascites tumors II. Gann 53: 73–80

    Google Scholar 

  104. Griffith OW, Meister A (1979) Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (s-u-butyl homocysteine sulfoximine). J Biol Chem 253: 7558–7560

    Google Scholar 

  105. Suzukake K, Petro BJ, Vistica DT (1982) Reduction in glutathione content of L-PAM-resistant L1210 cells confers drug sensitivity. Biochem Pharmacol 31: 121–124

    Article  PubMed  CAS  Google Scholar 

  106. Green TA, Vistica DT, Young RC, Hamilton TC, Rogers AM, Ozols RF (1984) Potentiation of melphalan cytotoxicity in human ovarian cancer cell lines by glutathione depletion. Cancer Res 44: 5427–5431

    PubMed  CAS  Google Scholar 

  107. Wellner VP, Anderson ME, Puri RN, Jensen GL, Meister A (1984) Radioprotection by glutathione ester. Transport of glutathione ester into human lymphoid cells and fibroblasts. Proc Natl Acad Sci USA 81: 4732–4735

    Google Scholar 

  108. Cline MJ, Stand H, Mecola K, Morse RL, Ruprecht R, Brown J, Salser W (1980) Gene transfer in intact animals. Nature 284: 422–424

    Article  PubMed  CAS  Google Scholar 

  109. Carr F, Medina WD, Dube S, Bertino JR (1983) Genetic transformation of murine bone marrow cells to methotrexate. Blood 62: 180–186

    PubMed  CAS  Google Scholar 

  110. Miller DW, Eckner RJ, Jolly DJ, Friedman T, Verma IM (1984) Expression of a retrovirus encoding human HPRT in mice. Science 225: 630–632

    Article  PubMed  CAS  Google Scholar 

  111. Miller AD, Law MF, Verma IM (1984) Generation of helper free amphotropic retroviruses that transduce a dominant acting reductase gene. Mol Cell Biol 5: 431–437

    CAS  Google Scholar 

  112. Ricciardone MD, Trauber DR, Matis LA, Cowan KH (1986) Retrovirus expression vectors which transfer methotrexate ( MTX) resistance. Proc Am Assoc Cancer Res 41: 11

    Google Scholar 

  113. Sheau-Fung Y, Von Ruden T, Kantoff PW, Garber C, Seiberg M, Ruther U, Anderson WF, Wagner EF, and Gilboa E (1986) Self-inactivating retroviral vectors designed for transfer of whole genes into mammalian cells. Proc Natl Acad Sci 83: 3194–3198

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ivy, S.P., Ozols, R.F., Cowan, K.H. (1989). Drug Resistance in Cancer. In: Magrath, I. (eds) New Directions in Cancer Treatment. UICC International Union Against Cancer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83405-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83405-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-19063-9

  • Online ISBN: 978-3-642-83405-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics