Skip to main content

Analysis of Cross-Links in the Growing Cell Walls of Higher Plants

  • Chapter
Plant Fibers

Part of the book series: Molecular Methods of Plant Analysis ((MOLMETHPLANT,volume 10))

Abstract

The growing cell walls of higher plants consist of a rather small number of major polymers (Table 1; for details, see Fry 1988). Most of these are polysaccharides, which fall into three major classes: cellulose [β-(1→4)-glucan, the skeletal frame-work of the wall] hemicelluloses (generally rigid, rod-shaped polysaccharides that hydrogen-bond to the cellulose and can be extracted from the wall with cold NaOH), and pectins (jelly-like, often acidic polysaccharides that are more loosely bound in the wall; a proportion can be extracted with chelating agents). In the growing cell walls of Dicotyledons, these three classes are about equally abundant, whereas grasses possess much less pectin (McNeil et al. 1984). All growing cell walls also contain some glycoproteins (Lamport 1977), and some contain large amounts of additional polymers - e.g., even rapidly growing epidermal walls contain cutin (Lendzian and Schönherr 1983), which is built up of a polyester of long aliphatic chains mixed, meshed or bonded with a network of phenolic rings (Holloway 1982).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahluwalia B, Fry SC (1986) Barley endosperm cell walls contain a feruloylated arabino- xylan and a non-feruloylated β-glucan. J Cer Sci 4:287–295

    Article  CAS  Google Scholar 

  • Akiyama Y, Mori M, Katô K (1980) 13C-NMR Analysis of hydroxyproline arabinosides from Nicotiana tabacum. Agric Biol Chem 44:2487–2489

    Article  CAS  Google Scholar 

  • Andersen SO (1964) The cross-links in resilin identified as dityrosine and trityrosine. Biochim Biophys Acta 93:213–215

    Article  CAS  PubMed  Google Scholar 

  • Aspinall GO (1973) Degradation of polysaccharides. In: Bentley KW, Kirby GW (eds) Elucidation of organic structures by physical and chemical methods. Wiley, New York, pp 379–450

    Google Scholar 

  • Aspinall GO, Molloy JA, Craig JWT (1969) Extracellular polysaccharides from suspension-cultured sycamore cells. Can J Biochem 47:1063–1070

    Article  CAS  PubMed  Google Scholar 

  • Bauer WD, Talmadge KW, Keegstra K, Albersheim P (1973) The structure of plant cell walls. II. The hemicellulose of suspension-cultured sycamore cells. Plant Physiol 51:174–184

    Article  CAS  PubMed  Google Scholar 

  • Biggs KJ, Fry SC (1987) Phenolic cross-linking in the plant cell wall. In: Cosgrove DJ, Knievel DP (eds) Physiology of cell expansion during plant growth. Am Soc Plant Physiol, Rockville, MD, pp 46–57

    Google Scholar 

  • Birkofer L, Kaiser C, Kosmol H, Romussi G, Donike M, Michaelis G (1966) D-Glucose- und L-Rhamnoseester der p-Coumar- und Ferulasäure. Ann Chem 699:223–231

    CAS  Google Scholar 

  • Blakeney AB, Harris PJ, Henry RJ, Stone BA (1983) A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydr Res 113:291–299

    Article  CAS  Google Scholar 

  • Carpita NC (1984) Fractionation of hemicelluloses from maize cell walls with increasing concentrations of alkali. Phytochemistry 23:1089–1093

    Article  CAS  Google Scholar 

  • Carpita NC (1986) Incorporation of proline and amino acids into the cell walls of maize coleoptiles. Plant Physiol 80:660–666

    Article  CAS  PubMed  Google Scholar 

  • Chanzy H, Chumpitazi B, Peguy A (1982) Solutions of polysaccharides in N-methyl mor- pholine N-oxide (MMNO). Carbohydr Polym 2:35–42

    Article  CAS  Google Scholar 

  • Chen J, Varner JE (1985) An extracellular matrix protein in plants: characterization of a genomic clone for carrot extensin. EMBO J 4:2145–2151

    CAS  PubMed  Google Scholar 

  • Dence CW, Gupta MK, Sarkanen KV (1962) Studies on oxidative dehgniflcation mechanisms. Part II. Reactions of vanillyl alcohol with chlorine dioxide and sodium chlorite. TAPPI 45:29–38

    CAS  Google Scholar 

  • Enoki A, Yaku F, Koshijima T (1983) Synthesis of LCC model compounds and their chemical and enzymatic stability. Holzforschung 37:135–141

    Article  CAS  Google Scholar 

  • Eshdat Y, Mirelman D (1972) An improved method for the recovery of compounds from paper chromatograms. J Chromatogr 65:458–459

    Article  CAS  Google Scholar 

  • Fry SC (1979) Phenolic components of the primary cell wall and their possible rôle in the hormonal regulation of growth. Planta 146:343–351

    Article  CAS  Google Scholar 

  • Fry SC (1980) Gibberellin-controlled pectinic acid and protein secretion in growing cells. Phytochemistry 19:735–740

    Article  CAS  Google Scholar 

  • Fry SC (1982 a) Phenolic components of the primary cell wall: feruloylated disaccharides of D-galactose and L-arabinose from spinach polysaccharide. Biochem J 203:439–504

    Google Scholar 

  • Fry SC (1982 b) Isodityrosine, a new cross-linking amino acid from plant cell wall glycoprotein. Biochem J 204:449–455

    CAS  PubMed  Google Scholar 

  • Fry SC (1983) Feruloylated pectins from the primary cell wall: their structure and possible functions. Planta 157:111–123

    Article  CAS  Google Scholar 

  • Fry SC (1984 a) Incorporation of [14C]cinnamate into hydrolase-resistant components of the primary cell wall. Phytochemistry 23:59–64

    Article  CAS  Google Scholar 

  • Fry SC (1984 b) Isodityrosine - its detection, estimation and chemical synthesis. Methods Enzymol 107:388–397

    Article  CAS  Google Scholar 

  • Fry SC (1985) Primary cell wall metabolism. Oxford Surv Plant Mol Cell Biol 2:1–42

    CAS  Google Scholar 

  • Fry SC (1986 a) Cross-linking of matrix polymers in the growing cell walls of angiosperms. Annu Rev Plant Physiol 37:165–186

    Article  CAS  Google Scholar 

  • Fry SC (1986 b) In-vivo formation of xyloglucan nonasaccharide: a possible biologically active cell-wall fragment. Planta 169:443–453

    Article  CAS  Google Scholar 

  • Fry SC (1987 a) Formation of isodityrosine by peroxidase isozymes. J Exp Bot 38:853–862

    Article  CAS  Google Scholar 

  • Fry SC (1987 b) Intracellular feruloylation of pectic polysaccharides. Planta 171:215–211

    Article  Google Scholar 

  • Fry SC (1988) The growing plant cell wall: chemical and metabolic analysis. Longman, London

    Google Scholar 

  • Fry SC (1989) Cellulases, hemicelluloses and auxin-stimulated growth: a possible relationship. Physiol Plant 75 (in press)

    Google Scholar 

  • Gahan PB, Bellani LM (1984) Identification of shoot apical meristem cells committed to form vascular elements in Pisum sativum L. and Vicia faba L. Ann Bot 54:837–841

    Google Scholar 

  • Gaspar T, Penel C, Thorpe T, Greppin H (1982) Peroxidases 1970–1980: a survey of the biochemical and physiological roles in higher plants. Université de Genève, Geneva

    Google Scholar 

  • Geissmann T (1970) Untersuchungen über die oxidative Gelierung von Weizenmehlpento- sanen und Phenolcarbonsäureestern von Polysacchariden. Thesis, Eidgenössische Technische Hochschule, Zürich

    Google Scholar 

  • Geissmann T, Neukom H (1971) Vernetzung von Phenolcarbonsäureestern von Polysacchariden durch oxydative phenolische Kupplung. Helv Chim Acta 54:1108–1112

    Article  CAS  Google Scholar 

  • Goldberg R (1985) Cell-wall isolation, general growth aspects. In: Linskens HF, Jackson JF (eds) Modem methods in plant analysis, new series, vol 1. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Gubler F, Ashford AE, Bacic A, Blakeney AB, Stone BA (1985) Release of ferulic acid esters from barley aleurone. II. Characterization of feruloyl compounds released in response to GA3. Aust J Plant Physiol 12:307–317

    Article  CAS  Google Scholar 

  • Haass D, Frey R, Thiesen M, Kauss H (1981) Partial purification of a haemagglutinin associated with cell walls from hypocotyls of Vigna radiata. Planta 151:490–496

    Article  CAS  Google Scholar 

  • Hartley RD (1987) HPLC for the separation and determination of phenolic compounds in plant cell walls. In: Linskens HF, Jackson JF (eds) Modern methods in plant analysis, new series, vol 5. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Hartley RD, Jones EC (1976) Diferulic acid as a component of cell walls of Lolium multiflorum. Phytochemistry 15:1157–1160

    Article  CAS  Google Scholar 

  • Hatfield RD, Nevins DJ (1987) Hydrolytic activity and substrate specificity of an endoglu- canase from Zea mays seedling cell walls. Plant Physiol 83:203–207

    Article  CAS  PubMed  Google Scholar 

  • Hayashi T, Marsden MPF, Delmer DP (1987) Pea xyloglucan and cellulose. V. Xyloglu- can-cellulose interactions in vitro and in vivo. Plant Physiol 83:384–389

    Article  CAS  PubMed  Google Scholar 

  • Holloway PJ (1982) The chemical constitution of plant cutins. In: Cutler DF, Alvin KL, Price CE (eds) The plant cuticle. Academic Press, London, pp 45–85

    Google Scholar 

  • Jarvis MC (1982) The proportion of calcium-bound pectin in plant cell walls. Planta 154:344–346

    Article  CAS  Google Scholar 

  • Jarvis MC (1984) Structure and properties of pectin gels in plant cell walls. Plant Cell Env 7:153–164

    CAS  Google Scholar 

  • Joseleau J-P, Chambat G, Chumpitazi-Hermoza B (1980) Solubilization of cellulose and other plant structural polysaccharides in 4-methylmorpholine-N-oxide: an improved method for the study of cell wall constituents. Carbohydr Res 90:339–344

    Article  Google Scholar 

  • Kato Y, Matsuda K (1980) Structure of oligosaccharides obtained by controlled degradation of mung bean xyloglucan with acid and Aspergillus oryzae enzyme preparation. Agr Biol Chem 44:1751–1758

    Article  CAS  Google Scholar 

  • Kato Y, Nevins DJ (1985) Isolation and identification of O-(5-O-feruloyl-α-L-arabinofura- nosyl)-(1→3)-O-β-D-xylopyranosyl-(1→4)-D-xylopyranose as a component of Zea shoot cell walls. Carbohydr Res 137:139–150

    Article  CAS  Google Scholar 

  • Lamport DTA (1977) Structure, biosynthesis and significance of cell wall glycoproteins. In: Loewus FA, Runeckles VC (eds) The structure, biosynthesis and degradation of wood. Recent Adv Phytochem 11, Plenum, New York, pp 79–115

    Google Scholar 

  • Lamport DTA, Epstein L (1983) A new model for the primary cell wall: a concatenated extensin-cellulose network. Proc Ann Plant Biochem Physiol Symp 2:73–83. University of Missouri Press, Columbia, Missouri

    Google Scholar 

  • Lendzian KJ, Schönherr J (1983) In-vivo study of cutin synthesis in leaves of Clivia miniata Reg. Planta 158:70–75

    Article  CAS  Google Scholar 

  • Lindgren BO (1979) Reactions of lignin during bleaching with chlorine and chlorine dioxide (in Swedish). Sven Papperstidn 82:126–130

    CAS  Google Scholar 

  • Markwalder H-U, Neukom H (1976) Diferulic acid as a possible crosslink in hemicelluloses from wheat germ. Phytochemistry 15:836–837

    Article  CAS  Google Scholar 

  • McNeil M, Darvill AG, Albersheim P (1979) The structural polymers of the primary cell walls of Dicots. Prog Chem Org Nat Prods 37:191–249

    CAS  Google Scholar 

  • McNeil M, Darvill AG, Fry SC, Albersheim P (1984) Structure and function of the primary cell walls of plants. Annu Rev Biochem 53:625–663

    Article  CAS  PubMed  Google Scholar 

  • Melton LD, McNeil M, Darvill AG, Albersheim P, Dell A (1986) Structural characterization of oligosaccharides isolated from the pectic polysaccharide Rhamnogalacturonan II. Carbohydr Res 146:279–305

    Article  CAS  Google Scholar 

  • Morrison IM (1977) Extraction of hemicelluloses from plant cell-walls with water after preliminary treatment with methanolic sodium methoxide. Carbohydr Res 57:C4–C6

    Article  CAS  Google Scholar 

  • Mort AJ, Bauer WD (1982) Application of two new methods for cleavage of polysaccharides into specific oligosaccharide fragments: structure of the capsular and extracellular polysaccharides of Rhizobium japonicum that bind soybean lectin. J Biol Chem 257:1870–1875

    CAS  PubMed  Google Scholar 

  • Northcote DH (1972) Chemistry of the plant cell wall. Annu Rev Plant Physiol 23:113–132

    Article  CAS  Google Scholar 

  • O’Neill MA, Selvendran RR (1980) Glycoproteins from the cell wall of Phaseolus coccineus. Biochem J 187:53–63

    PubMed  Google Scholar 

  • Ride JP (1975) Ligniflcation in wounded wheat leaves in response to fungi and its possible rôle in resistance. Physiol Plant Pathol 5:125–134

    Article  CAS  Google Scholar 

  • Scalbert A, Monties B, Lallemand J-Y, Rolando C (1985) Ether linkage between phenolic acids and lignin fractions from wheat straw. Phytochemistry 24:1359–1362

    Article  CAS  Google Scholar 

  • Schuster P, Zundel G, Sandorfy C (1976) The hydrogen bond (3 vols), North Holland, Amsterdam

    Google Scholar 

  • Selvendran RR, Stevens BJH, O’Neill MA (1985) Developments in the isolation and analysis of cell walls from edible plants. In: Brett CT, Hillman JR (eds) Biochemistry of plant cell walls. Cambridge University Press, pp 39–78

    Google Scholar 

  • Shinkle JR, Jones RL (1988) Inhibition of stem elongation in Cucumis seedlings by blue light requires calcium. Plant Physiol 86:960–966

    Article  CAS  PubMed  Google Scholar 

  • Smidsrød O, Haug A, Larson B (1966) The influence of pH on the rate of hydrolysis of acidic polysaccharides. Acta Chem Scand 20:1026–1034

    Article  PubMed  Google Scholar 

  • Smith JJ, Muldoon EP, Lamport DTA (1984) Isolation of extensin precursors by direct elution of intact tomato cell suspension cultures. Phytochemistry 23:1233–1240

    Article  CAS  Google Scholar 

  • Stevens BJH, Selvendran RR (1984) Pectic polysaccharides of cabbage (Brassica oleracea). Phytochemistry 23:107–115

    Article  CAS  Google Scholar 

  • Taylor WI, Battersby AR (eds) (1967) Oxidative Coupling of Phenols, Dekker, New York

    Google Scholar 

  • Valent BS, Darvill AG, McNeil M, Robertsen BK, Albersheim P (1980) A general and sensitive chemical method for sequencing the glycosyl residues of complex carbohydrates. Carbohydr Res 79:165–192

    Article  CAS  PubMed  Google Scholar 

  • van der Wilden W, Segers JHL, Chrispeels MJ (1983) Cell walls of Phaseolus vulgaris leaves contain the Azocoll-digesting proteinase. Plant Physiol 73:576–578

    Article  PubMed  Google Scholar 

  • Varoquaux P, Labavitch JM, Strand LL, Varoquaux-Tournemelle F (1982) Partial characterization of hydroxycinnamoylquinate esterase from Aspergillus niger. Lebensm-Wiss Technol 15:39–41

    CAS  Google Scholar 

  • Wallner SJ, Nevins DJ (1974) Changes in cell walls associated with cell separation in suspension cultures of Paul’s Scarlet rose. J Exp Bot 25:1020–1029

    Article  CAS  Google Scholar 

  • Watanabe T, Kaizu S, Koshijima T (1986) Binding sites of carbohydrate moieties toward lignin in “lignin-carbohydrate complex” from Pinus densiflora wood. Chem Lett 1986:1871–1874

    Article  Google Scholar 

  • Wellinder KG (1976) Covalent structure of the glycoprotein horseradish peroxidase (EC 1.11.1.7). FEBS Lett 72:19–23

    Article  Google Scholar 

  • Whitmore FW (1976) Binding of ferulic acid to cell walls by peroxidases of Pinus elliottii. Phytochemistry 15:375–378

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fry, S.C. (1989). Analysis of Cross-Links in the Growing Cell Walls of Higher Plants. In: Linskens, HF., Jackson, J.F. (eds) Plant Fibers. Molecular Methods of Plant Analysis, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83349-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83349-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83351-9

  • Online ISBN: 978-3-642-83349-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics