Maximum Likelihood Reconstruction for SPECT Using Monte Carlo Simulation

  • Carey E. FloydJr.
  • Stephen H. Manglos
  • Ronald J. Jaszczak
  • R. Edward Coleman
Part of the NATO ASI Series book series (volume 39)


Reconstructed images for single photon emission computed tomography (SPECT) with quantitative compensation for scatter and attenuation are provided using Inverse Monte Carlo (IMOC): Maximum likelihood estimation with Monte Carlo modeling of the photon interaction and detection probabilities. Quantitative compensation was evaluated by comparing region of interest values for compensated images of line sources scanned in water with line sources scanned in air. Compensation was demonstrated for both 360° 180° acquisition. Lesion contrast was investigated for cold spheres in an active background.


Single Photon Emission Compute Tomography Line Source Single Photon Emission Compute Tomo Imaging Single Photon Emission Compute Tomo System Attenuation Compensation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beck, J.W. (1982). Analysis of a camera based single photon emission computed tomography (SPECT) system. PhD Dissertation, 1982 Duke University, (University Microfilms) Ann Arbor, Michigan.Google Scholar
  2. Bell, G. and Glasstone, S. (1970). Nuclear Reactor Theory,Van-Nostrand Reinhold.Google Scholar
  3. Chang, L.T. (1978). A method for attenuation correction in radionuclide computed tomography, IEEE Trans. Nucl. Sci. NS-25, pp. 638–642.CrossRefGoogle Scholar
  4. Chen, C.T. and Metz, C.E. (1985). A simplified EM reconstruction algorithm for TOFPET. IEEE Trans. Nucl. Sci. NS-32, pp. 885–888.CrossRefGoogle Scholar
  5. Floyd, C.E., Jaszczak, R.J., and Coleman, R.E. (1985). Inverse Monte Carlo: a unified reconstruction algorithm for SPECT, IEEE Trans. Nuclo Sci. 32, pp. 779.CrossRefGoogle Scholar
  6. Floyd, C.E., Jr., Jaszczak, R.J., Greer, K.L., and Coleman, R.E. (1985). Cone beam collimation for SPECT: simulation and reconstruction, IEEE Trans. Nucl. Sci. NS-33, pp. 511–514.Google Scholar
  7. Floyd, C.E., Jaszczak, R.J., Greer, K.L., and Coleman, R.E. (1986). Inverse Monte Carlo as a unified reconstruction algorithm for ECT, J. Nucl. Med. 27, pp. 1577–1585.Google Scholar
  8. Greer, K.L., Jaszczak, R.J., and Coleman, R.E. (1982). An overview of a camera-based SPECT system, Med. Phys. 9, pp. 455–463.CrossRefGoogle Scholar
  9. Jaszczak, R.J., Coleman, R.E., and Whitehead, F.R. (1981). Physical factors affecting quantitative measurements using camera-based single photon emission computed tomography (SPECT), IEEE Trans. Nucl. Sci. NS-28, pp. 69–80.CrossRefGoogle Scholar
  10. Jaszczak, R.J., Greer, K.L., Floyd, Jr., C.E., Harris, C.C., and Coleman, R.E. (1984). Improved SPECT quantitation using compensation for scattered photons, J. Nucl. Med. 25, pp. 893–900.Google Scholar
  11. Lange, K. and Carson, R. (1984). EM reconstruction algorithms for emission and transmission tomography, J. Comput. Assist. Tomogr. 8, pp. 306–316.Google Scholar
  12. Lewis, E.E. and Miller, W.F. (1984). Computational Methods of Neutron Transport, John Wiley and Sons, New York.Google Scholar
  13. Llacer, J., Andreae, S., Veklerov, E., and Hoffmann, E.J. (1986). Towards a practical implementation of the MLE algorithm for positron emission tomography, IEEE Trans. Nucl. Sci. 33, pp. 468.CrossRefGoogle Scholar
  14. Llacer, J. and Meng, J.D. (1985). Matrix-based image reconstruction methods for tomography, IEEE Trans. Nucl. Sci. 32, pp. 855.CrossRefGoogle Scholar
  15. Miller, M.I., Snyder, D.L., and Miller, T.R. (1985). Maximum-likelihood reconstruction for single-photon emission computed tomography, IEEE Trans. NucZ. Sci. NS-32, pp. 769–778.CrossRefGoogle Scholar
  16. Miller, M.I., Snyder, D.L., and Moore, S.M. (1986). An evaluation of the use of sieves for producing estimates of radioactivity distributions with the EM algorithm for PET, IEEE Trans. Nucl. Sci. 33, pp. 492.CrossRefGoogle Scholar
  17. Rockmore, A.J. and Macovski, A. (1976). A maximum likelihood approach to emission image reconstruction from projections, IEEE Trans, NucZ. Sci. NS-23, pp. 1428–1432.CrossRefGoogle Scholar
  18. Shepp, L.A. and Vardi, Y. (1982). Maximum likelihood reconstruction for emission tomography, IEEE Trans. Med. Im. MI-1, pp. 113–121.CrossRefGoogle Scholar
  19. Shepp, L.A., Vardi, Y., Ra, J.B., Hilal, S.K., and Cho, Z.H. (1984). Maximum likelihood PET with real data, IEEE Trans. NucZ. Sci. NS-31, pp. 910–913.CrossRefGoogle Scholar
  20. Snyder, D.L. and Politte, D.G. (1983). Image reconstruction from listmode data in an emission tomography system having time-of-flight measurements, IEEE Trans. Nucl. Sci. NS-30, pp. 1843–1849.CrossRefGoogle Scholar
  21. Vishampayan, S., Stamos, J., Mayans, R., Koral, K., Clinthorne, N., and Rogers, W.L. (1985). Maximum-likelihood image reconstruction for SPECT, J. Nucl. Med. 26, pp. 20.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Carey E. FloydJr.
    • 1
  • Stephen H. Manglos
    • 1
  • Ronald J. Jaszczak
    • 1
  • R. Edward Coleman
    • 1
  1. 1.Duke University Medical CenterDurhamUSA

Personalised recommendations