Skip to main content

Frequency Domain Optical Storage and Other Applications of Persistent Spectral Hole-Burning

  • Chapter
Persistent Spectral Hole-Burning: Science and Applications

Part of the book series: Topics in Current Physics ((TCPHY,volume 44))

Abstract

This chapter describes several possible applications of persistent spectral hole-burning (PSHB) with particular emphasis on the application that has received the most attention to date, frequency domain optical storage (FDOS). Engineering and systems issues influencing the form a FDOS system might take are summarized, and optimal properties of single-photon materials are derived. The limitations of monophotonic mechanisms underscore the need for photon-gated processes, and the examples of photon gating known to date are summarized. Other methods of organizing an optical storage system based on PSHB are also described, including holographic, time domain, and electric field schemes. Applications of PSHB to spectral filtering and optical waveform processing are briefly mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See for example A. E. Bell: Laser Focus/Electro-Optics 19, 61 (August 1983)

    Google Scholar 

  2. A. E. Bell: Laser Focus,Electro-Optics 19, 125 (September 1983)

    Google Scholar 

  3. A. E. Bell: Proc. Soc. Infor. Disp. 24, 17 (1983)

    Google Scholar 

  4. A. Szabo: “Frequency selective optical memory,” U. S. Patent No. 3,896, 420 (1975)

    Google Scholar 

  5. G. Castro, D. Haarer, R. M. Macfarlane, H. P. Trommsdorff: “Frequency selective optical data storage system,” U. S. Patent No. 4,101, 976, (1978)

    Google Scholar 

  6. D. Haarer: Proc. Soc. Photo-Opt. Inst. Engr. 177, 97 (1979)

    Google Scholar 

  7. G. C. Bjorklund, W. Lenth, C. Ortiz: Proc. Soc. Photo-Opt. Instr. Eng. 298, 107 (1981)

    Google Scholar 

  8. A. R. Gutierrez, J. Friedrich, D. Haarer, H. Wolfrum: IBM J. Res. Devel: 26, 198 (1982), and references therein

    Google Scholar 

  9. W. E. Moerner: Proc. Soc. Photo-Opt. Instr. Engr. 541, 60 (1985)

    Google Scholar 

  10. W. Lenth, R. M. Macfarlane, W. E. Moerner, F. M. Schellenberg, R. M. Shelby, G. C. Bjorklund: Proc. Soc. Photo-opt. Instrum. Engr. 695, 216 (1986)

    Google Scholar 

  11. W. E. Moerner: J. Molec. Elec., 1, 55 (1985)

    ADS  Google Scholar 

  12. Oxford Instruments Ltd., Oxford, England

    Google Scholar 

  13. A. Winnacker, R. M. Shelby, R. M. Macfarlane: J. de Phys. Colloq. C7, Suppl. 10, 46, C7–543 (1985)

    Google Scholar 

  14. F. M. Schellenberg, W. Lenth, G. C. Bjorklund: Appl. Opt. 25, 3207 (1986)

    Article  ADS  Google Scholar 

  15. S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura: IEEE J. Quant. Elec. QE-I8, 582 (1982)

    Article  ADS  Google Scholar 

  16. W. T. Tsang, N. A. Olsson, R. A. Logan: Appl. Phys. Lett. 42, 650 (1983)

    Article  ADS  Google Scholar 

  17. K. J. Ebeling, L. A. Coldren: Appl. Phys. Lett. 44, 735 (1984)

    Article  ADS  Google Scholar 

  18. G. C. Bjorklund: Opt. Lett. 5, 15 (1980)

    Article  ADS  Google Scholar 

  19. G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz: Appl. Phys. B32, 145 (1983)

    Article  Google Scholar 

  20. M. D. Levenson, W. E. Moerner, D. E. Horne: Opt. Lett. 8, 108 (1983)

    Article  ADS  Google Scholar 

  21. E. A. Whittaker, H.R. Wendt, H. E. Hunziker, G. C. Bjorklund: Appl. Phys. B 35, 105 (1984)

    Article  ADS  Google Scholar 

  22. M. Gehrtz, W. E. Moerner, G. C. Bjorklund: IBM Research Report RJ 4678, April 30, 1985

    Google Scholar 

  23. M. Gehrtz, G. C. Bjorklund, E. A. Whittaker: J. Opt. Soc. Am. B 2, 1510 (1985)

    Article  ADS  Google Scholar 

  24. A. L. Huston, W. E. Moerner: J. Opt. Soc. Am. B: Opt. Phys. 1, 349 (1984)

    Article  ADS  Google Scholar 

  25. A. L. Huston, W. E. Moerner: U. S. Patent 4,614,116, “Phase Sensitive Ultrasonic Modulation Method for the Detection of Strain-Sensitive Spectral Features’, September 30, 1986

    Google Scholar 

  26. W. E. Moerner, A. L. Huston: Appl. Phys. Lett. 48, 1181 (1986)

    Article  ADS  Google Scholar 

  27. M. Romagnoli, M. D. Levenson, G. C. Bjorklund: Opt. Lett. 8, 635 (1983)

    Article  ADS  Google Scholar 

  28. M. Romagnoli, M. D. Levenson, G. C. Bjorklund: J. Opt. Soc. Am. B: Opt. Phys. 1, 571 (1984)

    Article  ADS  Google Scholar 

  29. P. Pokrowsky, W. E. Moerner, F. Chu, G. C. Bjorklund: Opt. Lett. 8, 280 (1983)

    Article  ADS  Google Scholar 

  30. P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund: Opt. Commun. 44, 175 (1983)

    Article  ADS  Google Scholar 

  31. W. Lenth: Opt. Lett. 8, 575 (1983)

    Article  ADS  Google Scholar 

  32. W. Lenth: IEEE J. Quant. Elec. QE-20, (1984)

    Google Scholar 

  33. M. Gehrtz, W. Lenth, A. T. Young, H. S. Johnston: Opt. Lett. 11, 132 (1986)

    Article  ADS  Google Scholar 

  34. W. Lenth and M. Gehrtz: Appl. Phys. Lett. 47, 1263 (1985)

    Article  ADS  Google Scholar 

  35. D. J. Bernays: Proc. Soc. Photo-Opt. Instrum. Engr., 498, 175 (1984)

    Google Scholar 

  36. W. E. Moerner, F. M. Schellenberg, G. C. Bjorklund: Appl. Phys. B28, 263 (1982)

    Google Scholar 

  37. W. E. Moerner, P. Pokrowsky, F. M. Schellenberg, G. C. Bjorklund: Phys. Rev. B. 32, 1270 (1985)

    Article  ADS  Google Scholar 

  38. S. Yamaguchi, M. Suzuki: Appl. Phys. Lett. 41, 597 (1982)

    Article  ADS  Google Scholar 

  39. W. E. Moerner: Proceedings of the International Conference: Lasers ‘83, R. C. Powell, editor, (STS Press, McLean, VA 1983 ), p. 489

    Google Scholar 

  40. R. M. Macfarlane, R. T. Harley, R. M. Shelby: Rad. Effects 72, 1 (1983)

    Article  Google Scholar 

  41. H. P. H. Thijssen, R. E. van den Berg, S. Völker: Chem. Phys. Lett. 103, 23 (1983)

    Article  ADS  Google Scholar 

  42. A. Guiterrez, G. Castro, G. Schulte, D. Haarer: ‘Dynamical Linewidth Effects of Hole Burning of Free Base Phthalocyanine in Polymers: Spectral Diffusion and Exchange Narrowing’, in Organic Molecular Aggregates, Vol 49, P. Reineker, H. Haken, and H. C. Wolf, eds. (Springer, Berlin, Heidelberg 1983 ) pp. 206–214

    Chapter  Google Scholar 

  43. H. W. H. Lee, A. L. Huston, M. Gehrtz, W. E. Moerner: Chem. Phys. Lett. 114, 491, (1985)

    Article  ADS  Google Scholar 

  44. W. E. Moerner, F. M. Schellenberg, G.-C. Bjorklund, P. Kaipa, F. Lüty: Phys. Rev. B. 32, 1270 (1985)

    Article  Google Scholar 

  45. D. Botez: IEEE Spectrum, June 1985, pp. 43–53

    Google Scholar 

  46. J.-C. Baumert, P. Günter, H. Melchior: Opt. Commun. 48, 215 (1983)

    Article  ADS  Google Scholar 

  47. D. M. Burland, D. Haarer: IBM J. Res. Devel. 23, 534 (1979)

    Article  Google Scholar 

  48. L. A. Rebane, A. A. Gorokhovskii, J. V. Kikas: Appl. Phys. B29, 235–250 (1982)

    Article  Google Scholar 

  49. S. Völker, J. H. van der Waals: Molec. Phys. 32, 1703 (1976)

    Article  ADS  Google Scholar 

  50. S. Völker, R. M. Macfarlane: IBM J. Res. Devel. 23, 547 (1979)

    Article  Google Scholar 

  51. A. Winnacker, R. M. Shelby, R. M. Macfarlane: Opt. Lett. 10, 350 (1985)

    Article  ADS  Google Scholar 

  52. W. Breinl, J. Friedrich, D. Haarer: Chem. Phys. Lett. 106, 487 (1984)

    Article  ADS  Google Scholar 

  53. W. Breinl, J. Friedrich, D. Haarer: J. Chem. Phys. 81, 3915 (1984)

    Article  ADS  Google Scholar 

  54. C. Ortiz, R. M. Macfarlane, R. M. Shelby, W. Lenth, G. C. Bjorklund: Appl. Phys. 25, 87 (1981)

    Article  ADS  Google Scholar 

  55. C. Ortiz, C. Alfonso, P. Pokrowsky, G. C. Bjorklund: Appl. Phys. Lett. 43, 1102 (1983)

    Article  ADS  Google Scholar 

  56. For a clear definition, see W. E. Moerner, M. Gehrtz, A. L. Huston: J. Phys. Chem. 88, 6459 (1984)

    Google Scholar 

  57. L. Kador, G. Schulte, D. Haarer: J. Phys. Chem. 90, 1264 (1986)

    Article  Google Scholar 

  58. M. Romagnoli, W. E. Moerner, F. M. Schellenberg, M. D. Levenson, G. C. Bjorklund: J. Opt. Soc. Am. B: Optical Physics 1, 341 (1984)

    Article  ADS  Google Scholar 

  59. The excited state lifetime cannot be much shorter, or the hole width will become greater than 500 MHz. See reference [7.58]

    Google Scholar 

  60. W. E. Moerner, M. D. Levenson: J. Opt. Soc. Amer. B: Optical Physics 2, 915 (1985)

    Article  ADS  Google Scholar 

  61. W. E. Moerner, A. R. Chraplyvy, A. J. Sievers,.R. H. Silsbee: Phys. Rev. B 28, 7244 (1983)

    Article  ADS  Google Scholar 

  62. F. M. Schellenberg: IBM Research Report #RJ4687, May 3, 1985

    Google Scholar 

  63. D. M. Burland, F. Carmona, G. Castro, D. Haarer, R. M. Macfarlane: IBM Tech. Discl. Bull. 21, 3770 (1979)

    Google Scholar 

  64. H. W. H. Lee, M. Gehrtz, E. Marinero, W. E. Moerner: Chem. Phys. Lett. 118, 611 (1985)

    Article  ADS  Google Scholar 

  65. R. M. Macfarlane, J. C. Vial: Phys. Rev. B 34, 1 (1986)

    Article  ADS  Google Scholar 

  66. M. Iannone, G. W. Scott, D. Brinza, D. R. Coulter: J. Chem. Phys. 85, 4863 (1986)

    Article  ADS  Google Scholar 

  67. T. P. Carter, C. Bräuchle, V. Y. Lee, M. Manavi, W. E. Moerner: Opt. Lett. 12, 370 (1987)

    Article  ADS  Google Scholar 

  68. T. P. Carter, C. Bräuchle, V. Y. Lee, W. E. Moerner: J. Phys. Chem. 91, 3998 (1987)

    Article  Google Scholar 

  69. W. E. Moerner, T. P. Carter, C. Bräuchle: Appl. Phys. Lett. 49, 430 (1987)

    Article  ADS  Google Scholar 

  70. A. J. Silversmith, W. Lenth, and R. M. Macfarlane: to be published

    Google Scholar 

  71. W. Lenth, W. E. Moerner: Opt. Commun. 58, 249 (1986)

    Article  ADS  Google Scholar 

  72. T. W. Mossberg: Opt. Lett. 7, 77 (1982)

    Article  ADS  Google Scholar 

  73. L. Allen, J. H. Eberly: Optical Resonance and Two-Level Atoms, ( Wiley, New York 1975 )

    Google Scholar 

  74. R. G. Brewer: “Coherent Optical Spectroscopy,” in Proc. Int. Summer School “Enrico Fermi” LXIV: Nonlinear Spectroscopy, Varenna, Italy, ed. by N. Bloembergen, (North-Holland, Amsterdam 1977 ), pp. 87–137

    Google Scholar 

  75. R. L. Shoemaker: “Coherent Transient Infrared Spectroscopy,” in Laser and Coherence Spectroscopy, ed. by J. I. Steinfeld, ( Plenum, New York 1978 ), pp. 197–371

    Google Scholar 

  76. A. G. Anderson, R. L. Garwin, E. L. Hahn, J. W. Horton, G. L. Tucker, R. M. Walker: J. Appl. Phys. 26, 1324 (1955)

    Article  ADS  Google Scholar 

  77. W. H. Hesselink, D. A. Wiersma: Phys. Rev. Lett. 43, 1991 (1979)

    Article  ADS  Google Scholar 

  78. W. H. Hesselink, D. A. Wiersma: J. Chem. Phys. 75, 4192 (1981)

    Article  ADS  Google Scholar 

  79. H. de Vries, D. A. Wiersma: J. Chem. Phys. 80, 657 (1984)

    Article  ADS  Google Scholar 

  80. A. Rebane, R. Kaarli, P. Saari, A. Anijalg, K. Timpmann: Opt. Commun. 47, 173 (1983)

    Article  ADS  Google Scholar 

  81. A. K. Rebane, R. K. Kaarli, P. M. Saari: JETP Lett. 38, 383 (1983)

    ADS  Google Scholar 

  82. A. Rebane, R. Kaarli: Chem. Phys. Lett. 101, 317 (1983)

    Article  ADS  Google Scholar 

  83. Y. S. Bai, W. R. Babbitt, N. W. Carlson, T. W. Mossberg: Appl. Phys. Lett. 45, 714 (1984)

    Article  ADS  Google Scholar 

  84. P. M. Saari, R. K. Kaarli, A. K. Rebane: Kvantovaya Elektron. (Moscow) 12, 672 (1985)

    Google Scholar 

  85. K. K. Rebane: Cryst. Latt. Def. Amorph. Mater. 12, 427 (1985)

    Google Scholar 

  86. P. Saari, R. Kaarli, A. Rebane: J. Opt. Soc. Am. B 3, 527 (1986)

    Article  ADS  Google Scholar 

  87. K. K. Rebane: Sov. Phys. Usp. 29, 290 (1986)

    Article  ADS  Google Scholar 

  88. W. R. Babbitt, Y. S. Bai, T. W. Mossberg: Proc. Soc. Photo-Opt. Instrum. Engr. 639, 240 (1986)

    Google Scholar 

  89. N. W. Carlson, L. J. Rothberg, A. G. Yodh, W. R. Babbitt, T. W. Mossberg: Opt. Lett. 8, 483 (1983)

    Article  ADS  Google Scholar 

  90. N. W. Carlson, W. R. Babbitt, T. W. Mossberg: Opt. Lett. 8, 623 (1983)

    Article  ADS  Google Scholar 

  91. A. K. Rebane, R. K. Kaarli, P. M. Saari: Opt. Spektrosk. 55, 405 (1983)

    Google Scholar 

  92. P. W. Smith: Phil. Trans. R. Soc. Lond. A 313, 349 (1984)

    Article  ADS  Google Scholar 

  93. N. W. Carlson, W. R. Babbitt, Y. S. Bai, T. W. Mossberg: Opt. Lett. 9, 232 (1984)

    Article  ADS  Google Scholar 

  94. Y. S. Bai, W. R. Babbitt, T. W. Mossberg: Opt. Lett. 11, 724 (1986)

    Article  ADS  Google Scholar 

  95. G. Castro, R. H. Dicke, D. Haarer: IBM Tech. Disci. Bull. 21, 33–33 (1979)

    Google Scholar 

  96. M. Maier: Appl. Phys. B 41, 73 (1986)

    Article  ADS  Google Scholar 

  97. A. P. Marchetti, M. Scozzafava, R. H. Young: Chem. Phys. Lett. 51, 424 (1977)

    Article  ADS  Google Scholar 

  98. R. M. Macfarlane, R. M. Shelby: Phys. Rev. Lett. 42, 788 (1979)

    Article  ADS  Google Scholar 

  99. V. D. Samoloilenko, N. V. Razumova, R. I. Personov: Opt. Spectrosc. (USSR) 52, 346 (1982)

    ADS  Google Scholar 

  100. F. A. Burkhalter, G. W. Suter, U. P. Wild, V. D. Samoilenko, N. V. Rasumova, R. I. Personov: Chem. Phys. Lett. 94, 483 (1983)

    Article  ADS  Google Scholar 

  101. U. Bogner, P. Schätz, R. Seel, M. Maier: Chem. Phys. Lett. 102, 267 (1983)

    Article  ADS  Google Scholar 

  102. U. P. Wild, S. E. Bucher, F. A. Burkhalter: Appl. Opt. 24, 1526 (1985)

    Article  ADS  Google Scholar 

  103. U. Bogner, K. Beck, M. Maier: Appl. Phys. Lett. 46, 534 (1985)

    Article  ADS  Google Scholar 

  104. A. J. Meixner, A. Renn, S. E. Bucher, U. P. Wild: J. Phys. Chem. 90, 6777 (1986)

    Article  Google Scholar 

  105. W. E. Moerner: “Use of Homogeneous Electric Fields to Access the Longitudinal Spatial Dimension and to Provide Transverse Random Access in Frequency Domain Optical Memories,” Research Disclosure, No. 25333, May 1985

    Google Scholar 

  106. D. Haarer, R. V. Pole, S. Völker: “Non-destructive Readout Scheme for Holographic Storage System,” U. S. Patent 4,103,346, July 25, 1978

    Google Scholar 

  107. A. Renn, A. J. Meixner, U. P. Wild, F. A. Burkhalter: Chem. Phys. 93, 157 (1985)

    Article  Google Scholar 

  108. H. Kogelnik: Bell Syst. Tech. J. 48, 2909 (1969).

    Google Scholar 

  109. G. C. Bjorklund: U.S. Patent No$14,306,771, “Optical Pulse Shaping Device and Method,” December 22, 1981

    Google Scholar 

  110. G. C. Bjorklund, M. D. Levenson: “Laser Pulse Shaping Device Based on Fourier Synthesis Using Optical Anisotropies Produced by Spectral Hole Burning,” IBM Tech. Disci. Bull. 23, 2517 (1980)

    Google Scholar 

  111. P. Schätz, U. Bogner, M. Maier: Appl. Phys. Lett. 49, 1132 (1986)

    Article  ADS  Google Scholar 

  112. S. K. Case: Appl. Opt. 18, 1890 (1979)

    Article  ADS  Google Scholar 

  113. G. C. Bjorklund, G. T. Sincerbox: “Frequency Multiplexed Optical Spatial Filter Based Upon Photochemical Hole Burning,” U. S. Patent No. 4,533,211, August 6, 1985

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moerner, W.E., Lenth, W., Bjorklund, G.C. (1988). Frequency Domain Optical Storage and Other Applications of Persistent Spectral Hole-Burning. In: Moerner, W.E. (eds) Persistent Spectral Hole-Burning: Science and Applications. Topics in Current Physics, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83290-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83290-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83292-5

  • Online ISBN: 978-3-642-83290-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics