Stability of Brine Swollen Lamellar Phases

  • G. Porte
  • P. Bassereau
  • J. Marignan
  • R. May
Part of the Springer Proceedings in Physics book series (SPPHY, volume 21)


Swollen lamellar phases show long-range smectic order and consist of thin lamellae with a wide lateral extension separated by very large average distances B. Correlatively their stability involves two successive requirements. First the individual membrane must be the optimum morphology for the aggregation of the surfactant in the given experimental conditions. And secondly, some minimum interaction potential (ΔF/A) between membranes must be present in order to induce the long-range smectic order. This second more collective aspect of the stability of the Lα swollen phase is presently the subject of intense theoretical and experimental investigations: in particular several contributions to this conference (W.Helfrich; E.Evans; D.Roux; D.Sornette; S.Leibler; R.Lipowsky) are devoted to the relevance of the Helfrich steric interaction in the effective intermembrane forces. Nevertheless, the first individual aspect is also important. It is related to the morphological transformations of the individual membrane when going into the phases that are adjacent to Lα in the diagrams. In general, the membrane morphology and the intermembrane interaction are both affected by the variations of any composition variable of the system. And it is usually difficult to define the adequate procedure to investigate separately these two intricate features of the stability.


Alcohol Content Cetylpyridinium Chloride Lite Mixture Membrane Morphology Individual Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Helfrich, Z. Naturforsch 33a, 305, (1976).Google Scholar
  2. 2.
    R. Lipowski, S. Leibler, Phys. Rev. Lett. 56, 2541, (1986).CrossRefGoogle Scholar
  3. 3.
    J.M. Di Meglio, P. Bassereau, unpublished results.Google Scholar
  4. 4.
    A. Caille, C. R. Acad. Sci. Ser. B274, 891, (1972).Google Scholar
  5. 5.
    L. Gunther, Y. Imry, J. Lajzerowicz, Phys. Rev. A22, 1733, (1980).CrossRefGoogle Scholar
  6. 6.
    D. Roux, This Conference.Google Scholar
  7. 7.
    R. Lipowski, This Conference.Google Scholar
  8. 8.
    C.A. Miller, O.G. Ghosh, W.J. Benton, Colloids and Surfaces 19, 197, (1986).CrossRefGoogle Scholar
  9. 9.
    G. Porte, R. Gomati, O. El Haitamy, J. Appell, J. Marignan, J. Phys. Chem. 90, 5746, (1986).CrossRefGoogle Scholar
  10. 10.
    B. Lindman, This Conference.Google Scholar
  11. 11.
    O. Parodi, in Colloïdes et Interfaces, ed. A.M. Cazabat and D. Langevin, p. 355 ( Editions de Physique, Paris, 1983 ).Google Scholar
  12. 12.
    J. Charvolin, Journal de Physique C3, 46, 173, (1985).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • G. Porte
    • 1
  • P. Bassereau
    • 1
  • J. Marignan
    • 1
  • R. May
    • 2
  1. 1.Groupe de Dynamique des Phases CondenséesGRECO Microémulsions U.S.T.L.Montpellier CedexFrance
  2. 2.Institut Laue Langevin156X Centre de TriGrenoble CedexFrance

Personalised recommendations