Advertisement

Noise Analysis of Oscillators

  • Franz X. Kärtner

Abstract

The existing theories about noise in oscillators do not allow the simulation of the noise behaviour of real oscillator circuits. In this paper a numerical method for the determination of the phase fluctuations of oscillator circuits is presented. The oscillator is described by a set of nonlinear differential equations with intrinsic noise sources. The stationary solution of the system without noise sources corresponds to a limit cycle in the phase space of the system. By time discretisation with the help of Poincare maps and linearisation of the system of differential equations in the vicinity of the unperturbed limit cycle, we can derive discrete relations for the amplitude and phase fluctuations of an oscillator. From that the phase noise of an oscillator is determined.

Keywords

Phase Noise Noise Source Phase Fluctuation Oscillator Circuit Floquet Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. [1]
    P. Gruber: 1/f-Noise Generator; Noise in Physical Systems and 1/f-Noise 1985. Elsevier Science Publishers B. V. 1986.Google Scholar
  2. [2]
    B. Pellegrini, F. Saletti, B. Neri and P. Terreni: 1/f Noise Generators; Noise in Physical Systems and 1/f-Noise 1985. Elsevier Science Publischers B. V. 1986Google Scholar
  3. [3]
    A. Papoulis: Random Modulation: A Review; IEEE Transactions on Acoustics. Speech and Signalprocessing, ASSP 31, No. 1 (1983) 96–105.MATHCrossRefGoogle Scholar
  4. [4]
    F.X.Kaertner: To be published.Google Scholar
  5. [5]
    J. Guckenheimer & P. Holmes: Nonlinear Oscillations. Dynamical Systems and Bifurcations of Vector Fields, Springer Verlag, New York 1983.MATHGoogle Scholar
  6. [6]
    D.W. Jordan & P. Smith: Nonlinear Ordinary Differential Equations. Oxford University Press 1977.Google Scholar
  7. [7]
    H. Ihringer: Rauschen von Oszillatoren mit verzögerter Amplitudenregelung, Dissertation Technische Universität München 1981.Google Scholar
  8. [8]
    U. Penning: Rauschspektren von einkreisigen Oszillatoren mit beliebiger Trägheit des aktiven Elementes. Dissertation Technische Universität München 1983.Google Scholar
  9. [9]
    K. Wiesenfeld: Parametric amplification in semiconductor lasers: A dynamical perspective, Phys. Rev. A 33 4026 (1986).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1987

Authors and Affiliations

  • Franz X. Kärtner
    • 1
  1. 1.Lehrstuhl für HochfrequenztechnikTechnische Universität MünchenMünchen 2Germany

Personalised recommendations