The Spatial Dependence of Spin and Charge Correlations in a One-Dimensional, Single Impurity, Anderson Model

  • J. E. Gubernatis
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 74)


Recent advances in Monte Carlo algorithms for systems of interacting electrons have made possible the detailed study of the spatial dependence of spin and charge correlations in the Anderson single impurity model. The hamiltonian for this model [1]
$$H=\sum\limits_{ks}{{{\varepsilon }_{k}}+{{n}_{ks}}+\sum\limits_{k}{({{v}_{kd}}c_{ks}^{+}{{c}_{ds}}+v_{dk}^{*}c_{ds}^{+}{{c}_{ks}})}}+{{\varepsilon }_{d}}\sum\limits_{s}{{{n}_{ds}}}+U{{n}_{d\uparrow }}{{n}_{d\downarrow }}$$
has a non-degenerate impurity state with energy εd hybridized with strength Vkd to energy states εk of some conduction band. In addition it has a Coulomb interaction U between electrons with oppositely paired spins that try to occupy the impurity state.


Spatial Dependence Spin Correlation Anderson Model Monte Carlo Step Single Impurity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. W. Anderson: Phys. Rev. 124, 41 (1965).ADSCrossRefGoogle Scholar
  2. 2.
    F. D. M. Haldane: Phys. Rev. Lett. 40, 416 (1978).ADSCrossRefGoogle Scholar
  3. 3.
    H. R. Krishna-Murthy, J. W. Wilkins and K. G. Wilkins: Phys. Rev. B 21, 1003 (1980)ADSCrossRefGoogle Scholar
  4. H. R. Krishna-Murthy, J. W. Wilkins and K. G. Wilkins: Phys. Rev. B 21, 1044 (1980).ADSCrossRefGoogle Scholar
  5. 4.
    For example, see G. Grüner and A. Zawadowski: Rep. Prog. Phys. 37, 1497 (1974). Recently, a new approach combining perturbative scaling and non-perturbative renormalization-group methods has been applied to a related problem by K. Chen, C. Jayaprakresh and H. R. Krishna-Murthy in the preprint “Spatial Correlations around a Kondo Impurity.”ADSCrossRefGoogle Scholar
  6. 5.
    J. E. Gubernatis, T. C. Olson, D. J. Scalapino, and R. L. Sugar: J. Stat. Phys. 43, 831 (1986)ADSCrossRefGoogle Scholar
  7. J. E. Gubernatis, Los Alamos Technical Report LA-UR-86–2748.Google Scholar
  8. 6.
    J. E. Hirsch and R. M. Fye: Phys. Rev. Lett. 56, 2521 (1986).ADSCrossRefGoogle Scholar
  9. 7.
    J. E. Gubernatis, J. E. Hirsch, and D. J. Scalapino: Los Alamos Technical Report LA-UR-86–3510.Google Scholar
  10. 8.
    R. Blankenbecler, D. J. Scalapino, and R. L. Sugar: Phys. Rev. D 24, 2278 (1981).ADSCrossRefGoogle Scholar
  11. For related, earlier work see: M. Suzuki: Prog. Theor. Phys. 56, 1454 (1976)ADSzbMATHCrossRefGoogle Scholar
  12. M. Suzuki: Comm. Math. Phys. 51, 183 (1976).MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 9.
    J. E. Hirsch: Phys. Rev. B 28, 4059 (1983).ADSCrossRefGoogle Scholar
  14. 10.
    Historically, this equation was first derived in Ref. 8 and is the basis for other finite temperature quantum Monte Carlo methods for the simulations of fermion systems. For examples of prior use, see Ref. 5 or 9.Google Scholar
  15. 11.
    K. Binder: in Applications of the Monte Carlo Method in Statistical Mechanics, ed. by K. Binder. Topics in Current Physics, Vol. 36, (Springer, New York, 1984) p. 1.CrossRefGoogle Scholar
  16. 12.
    A. M. Clogston and P. W. Anderson: Bull. Am. Phys. Soc. 6, 124 (1961).Google Scholar
  17. 13.
    J. E. Gubernatis, unpublished.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • J. E. Gubernatis
    • 1
  1. 1.Theoretical DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations