A Stochastic Algorithm for Many-Fermion Systems

  • D. J. Scalapino
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 74)


A new algorithm for simulating many-fermion systems is discussed in the context of the 3-D Hubbard model.


Conjugate Gradient Hubbard Model Heat Bath Conjugate Gradient Iteration Quantum Monte Carlo Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Blankenbecler, D.J. Scalapino and R.L. Sugar, Phys. Rev. D24, 2278, (1981);ADSCrossRefGoogle Scholar
  2. D.J. Scalapino and R.L. Sugar, Phys. Rev. B24, 4295, (1981).ADSCrossRefGoogle Scholar
  3. 2.
    J.E. Hirsch, Phys.Rev to be published. B31 4403, (1985)Google Scholar
  4. 3.
    J.E. Gubernatis, D.J. Scalapino, R.L. Sugar and W.D. Toussaint, Phys. Rev. 32, 103, (1985).ADSCrossRefGoogle Scholar
  5. 4.
    D.J. Scalapino, E. Loh and J.E. Hirsch, Phys. Rev., to be published.Google Scholar
  6. 5.
    F. Fucito, E. Marinari, G. Parisi and C. Rebbi, Nucl. Phys. B180, 369, (1981).MathSciNetADSCrossRefGoogle Scholar
  7. 6.
    G.G. Batrouni, G.R. Katz, A.S. Kronfeld, G.P. Lepage, B. Svetitsky and K.G. Wilson, Phys. Rev. D 32, 2736, (1985).Google Scholar
  8. 7.
    S. Duane, Nucl. Phys. B257, 652, (1985);ADSCrossRefGoogle Scholar
  9. S. Duane and J. Kogut, Phys. Rev. Lett. 55, 2774, (1985).ADSCrossRefGoogle Scholar
  10. 8.
    R.T. Scalettar, D.J. Scalapino and R.L. Sugar, Phys. Rev. B, to be published.Google Scholar
  11. 9.
    S.A. Gottlieb, W. Liu, D. Toussaint, R.L. Renken and R.L. Sugar, Phys. Rev. D, to be published.Google Scholar
  12. 10.
    R.T. Scalettar, D.J. Scalapino and R.L. Sugar, to be published.Google Scholar
  13. 11.
    The overall fermion determinate is positive definite for the U 0 particle-hole Hubbard model. It is also positive definite for any filling with U 0 as well as for the electron-phonon model in which further potential terms are added to the x-field action.Google Scholar
  14. 12.
    R.L. Stratonovitch, Dokl. Akad. Nauk SSSR 115, 1097, (1957);Google Scholar
  15. J. Hubbard, Phys. Rev. Lett. 3, 77, (1959);CrossRefGoogle Scholar
  16. S.Q. Wang, W.E. Evanson and J.R. Schrieffer, Phys. Rev. Lett. 23, 92, (1969).ADSCrossRefGoogle Scholar
  17. 13.
    Here we measure energies in units of the transfer integral t in Eq. (1) so, for example, the bandwidth is 12.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • D. J. Scalapino
    • 1
  1. 1.Department of PhysicsUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations