Skip to main content

Meßtechnik in der Emissions-Computertomographie

  • Chapter
Book cover Nuklearmedizin / Nuclear Medicine

Part of the book series: Handbuch der Medizinischen Radiologie / Encyclopedia of Medical Radiology ((1523,volume 15 / 1 / B))

Zusammenfassung

Der Begriff Emissions-Tomographie bedarf einer Erläuterung, da nicht eindeutig festliegt, wo die flächige Szintigraphie aufhört und die Tomographie beginnt. Man könnte annehmen, daß mit Einführung des fokussierenden Vielloch-Kollimators beim szintigraphischen Scanner durch Newell et al. (1952) die Tomographie ihren Anfang genommen hat, denn in der Tat hat dieser Kollimator tomographische Eigenschaften. Er bildet eine bestimmte Objektschicht (Fokusebene) scharf ab, während die davor und dahinter liegenden Schichten mehr oder weniger unscharf abgebildet werden. Dieser Effekt war anfänglich bei den damals üblichen NaJ(Tl)-Szintillationskristallen mit 2 Zoll Durchmesser relativ gering, wurde dann aber bei den gebräuchlichen 5 Zoll Kristallen und besonders bei kürzeren Fokusabständen doch merklich. Trotzdem möchte ich diesen Scannern keine tomographischen Eigenschaften zuerkennen, denn diese Kollimatoren wurden entwickelt, um die Ausbeute gegenüber der einzelnen zylindrischen Bohrung ganz erheblich zu erhöhen und nicht, um damit Tomographie zu betreiben. Im Gegenteil, diese fokussierende Eigenschaft störte eher bei der flächigen Szintigraphie, da sie dazu zwang, den Kollimator-Objekt-Abstand möglichst exakt zu wählen. Auch wurde die räumliche Auflösung in den nicht fokussierten Schichten unnötigerweise schlecht.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Ahluwalia B, Brownell GL, Hales C, Kazemi H (1981) Regional lung function evaluation with Nitrogen-13. Eur J Nucl Med 6: 453–457

    Article  PubMed  CAS  Google Scholar 

  • Alkhafaji SM (1981) Monte Carlo calculations of a bismuth germanate scintillation detector. Nucl Instr Meth 187: 547–551

    Article  CAS  Google Scholar 

  • Allemand R, Gresset C, Vacher J (1980) Potential advantages of a cesium fluoride scintillator for a time-of-flight positron camera. J Nucl Med 21: 153–155

    PubMed  CAS  Google Scholar 

  • Alpert NM, Chesler DA, Correia JA, Ackerman RH, Chang JY, Finklestein S, Davis SM, Brownell GL, Taveras JM (1982) Estimation of the local statistical noise in emission computed tomography. IEEE Trans Med Imag MI-1: 142–146

    Google Scholar 

  • Anger HO, Rosenthal DJ (1959) Scintillation camera and positron camera — technical aspects. In: IAEA (ed) Medical radioisotope scanning. IAEA, Vienna, p 59

    Google Scholar 

  • Anger HO (1966) Tomographic Gamma-Ray scanner with simultaneous readout of several planes. UCRL-16899 Rep Lawrence Radiation Laboratory

    Google Scholar 

  • Anger HO (1967) The scintillation camera for radioisotope localization. In: Hoffman G, Scheer KE (Hrsg) Radioisotope in der Lokalisationsdiagnostik ( 1966 ). Schattauer, Stuttgart, S 1

    Google Scholar 

  • Anger HO (1968) Tomographic gamma-ray scanner with simultaneous readout of several planes. In: Gottschalk A, Beck RN (eds) Fundamental problems in scanning. Thomas, Springfield, p 195

    Google Scholar 

  • Anger HO (1969) Multiplane tomographic Gamma-Ray scanner. In: IAEA (Cd) Medical radioisotope scintigraphy. IAEA, Vienna, p 203

    Google Scholar 

  • Anger HO (1973) Multiplane tomographic scanner. In: Freedman GS (ed) Tomographic imaging in nuclear medicine. Soc Nucl Med Inc, New York, p2

    Google Scholar 

  • Areeda J, Chapman D, Van Train K, Bietendorf J, Friedman J, Berman D, Waxman A, Garcia E (1983) Methods for characterizing and monitoring rotational Gamma camera system performance. In: Esser PD (ed) Emission computed tomography. Soc Nucl Med New York, p 81

    Google Scholar 

  • Aurich F, Stange R (1982) Streutomographie–Dosimetrie und Aufnahmetechnik mit diagnostischen Röntgenstrahlen. Fortschr Röntgenstr 136: 206–210

    Article  CAS  Google Scholar 

  • Axelsson B, Msaki P, Israelsson A (1984) Subtraction of compton-scattered photons in single-photon emission computerized tomography. J Nucl Med 25: 490–494

    PubMed  CAS  Google Scholar 

  • Baron JC, Lebrun-Grandie P, Collard P, Crouzel C, Mestelan G, Bousser MG (1982) Noninvasive measurement of blood flow, oxygen consumption, and glucose utilization in the same brain regions in man by PET: Concise communication. J Nucl Med 23: 391–399

    PubMed  CAS  Google Scholar 

  • Barrett HH (1972) Fresnel zone plate imaging in nuclear medicine. J Nucl Med 13: 382–385

    PubMed  CAS  Google Scholar 

  • Barrett HH, Horrigan FA (1973) Fresnel zone plate imaging of gamma rays: Theory Appl Opt 12: 2686–2702

    CAS  Google Scholar 

  • Barrett HH, Meester GD de (1974) Quantum noise in fresnel zone plate imaging. Appl Optics 13: 1100–1109

    Article  CAS  Google Scholar 

  • Barrett HH, Swindell W (1977) Analog reconstruction methods for transaxial tomography. Proc of the IEEE 65: 89–107

    Article  Google Scholar 

  • Barrett HH, Wilson DT, Meester GD de (1972) The use of half-tone screens in fresnel-zone plate imaging of incoherent sources. Opt Corn 5: 398–401

    Article  Google Scholar 

  • Barrett HH, Stoner WW, Wilson DT, Meester GD de (1974) Coded apertures derived from the fresnel zone plate. Opt Eng 13: 539–549

    Google Scholar 

  • Barrett HH, Gordon SK, Hershel RS (1976) Statistical limitations in transaxial tomography. Comput Biol Med 6: 307–323

    Article  PubMed  CAS  Google Scholar 

  • Bateman JE, Connolly JF, Stephenson R, Flesher AC (1980) The development of the rutherford laboratory MWPC positron camera. Nucl Instr Meth 176: 83–88

    Article  CAS  Google Scholar 

  • Bates RHT, Peters TM (1971) Towards improve-ments in tomography. NZJ Sci 14: 883–896

    Google Scholar 

  • Beck JW (1983) Analysis of a camera based SPECT system. Nucl Instr Meth 213: 415–436

    Article  CAS  Google Scholar 

  • Beck JW, Jaszczak RJ, Coleman RE, Starmer CF, Nolte LW (1982) Analysis of SPECT including scatter and attenuation using sophisticated Monte Carlo modeling methods. IEEE Trans Nucl Sci NS-29/1: 506–511

    Article  Google Scholar 

  • Beller GA, Alton WJ, Cochavi S, Hnatowich D, Brownell GL (1979) Assessment of regional myocardial perfusion by positron emission tomography after intracoronary administration of gallium-68 labeled albumin microspheres. J Comput Assist Tomogr 3: 447–452

    Article  PubMed  CAS  Google Scholar 

  • Bellini S, Piacentini M, Cafforio C, Rocca F (1979) Compensation of tissue absorption in emission tomography. IEEE Trans Acoustics, Speech, Signal Process ASSP-27/3: 213–218

    Article  Google Scholar 

  • Berberich R, Schmidt EL, Brill G (1984a) Bildverbesserung durch gewichtete Subtraktion des Comptonanteils. In: Schmidt HAE, Adam WE (Hrsg) Nuklearmedizin 1983. Schattauer, Stuttgart, S 86–90

    Google Scholar 

  • Berberich R, Brill G, Schmidt EL (1984b) Verbesserung des Auflösungsvermögens der Gammakamera durch gewichtete Subtraktion der Streustrahlung. Nuc Compact 15: 246–251

    CAS  Google Scholar 

  • Bergström M, Bohm C, Ericson K, Eriksson L, Litton J (1980) Corrections for attenuation, scattered radiation, and random coincidences in a ring detector positron emission transaxial tomo-graph. IEEE Trans Nucl Sci NS-27/1: 549–554

    Google Scholar 

  • Bergström M, Litton J, Eriksson E, Blohm C, Blomqvist G (1982) Detamination of object contour from projections for attenuation correction in cranial positron emission tomography. J Corn-put Assist Tomogr 6: 365–372

    Article  Google Scholar 

  • Bernard AD, Bradstock PA, Milward RC (1978) Transverse-section (tomographic) medical Gamma-Ray imaging using the J&P multipoise tomoscanner. In: Schmidt HAE, Woldring M (Hrsg) Nuklearmedizin 1977. Schattauer, Stuttgart, S 27

    Google Scholar 

  • Biersack HJ, Früscher W, Klünenberg H, Reske SN, Rasche A, Reichmann K, Winkler C (1983 a) SPECT des Hirns mit J-123-Isoprophyl-Amphetamin bei Epilepsie. NUC Compact 14:62–72

    Google Scholar 

  • Biersack HJ, Reichmann K, Reske SN, Janson R, Knopp R, Winkler C (1983 b) Erste klinische Erfahrungen mit der parametrischen SPECT des Herzbinnenraumes. NUC Compact 14:36–39

    Google Scholar 

  • Blum AS (1983) Improving SPECT image quality by body contour following. In: Esser PD (ed) Emission computed tomography. Soc Nucl Med, New York, p 163

    Google Scholar 

  • Boetticher H von, Helmers H, Schreiber P, SchmitzFeuerhake I (1982) Advances in y–y-coincidence scintigraphy with the scintillation camera. Phys Med Biol 27: 1495–1506

    Article  Google Scholar 

  • Bohm C, Eriksson L, Bergström M, Litton J, Sund-man R, Singh M (1978) A computer assisted ring-detector positron camera system for reconstruction tomography of the brain. IEEE Trans Nucl Sci NS-25/1: 624–637

    Google Scholar 

  • Bonte FJ, Devous Sr. MD, Stokely EM, Homan RW (1983) Single-photon tomographic determination of regional cerebral blood flow in epilepsy. AJNR 4: 544–546

    PubMed  CAS  Google Scholar 

  • Borrello JA, Clinthorne NH, Rogers WL, Thrall JH, Keyes JW Jr (1981) Oblique-angle tomography: A restructuring algorithm for transaxial tomographic data. J Nucl Med 22: 471–483

    PubMed  CAS  Google Scholar 

  • Bowley AR, Taylor CG, Causer DA, Barber DC, Keyes WI, Undrill PE, Corfield JR, Mallard JR (1973) A radioisotope scanner for rectilinear, arc, transverse section and longitudinal section scanning: (ASS — the Aberdeen Section Scanner). Br J Radiol 46: 262–271

    Article  PubMed  CAS  Google Scholar 

  • Bozzo SR, Robertson JS, Milazzo JP (1968) A data processing method for a multidetector positron scanner. In: Gottschalk A, Beck RN (eds) Fundamental problems in scanning. Thomas, Springfield, p 212

    Google Scholar 

  • Bracewell RN (1956) Strip integration in radio astronomy. Aust J Phys 9: 198–217

    Article  Google Scholar 

  • Bracewell RN (1978) The fourier transform and its applications. Mc Graw Hill, New York

    Google Scholar 

  • Bracewell RN (1979) Image reconstruction in radio astronomy. In: Herman GT (ed) Image reconstruction from projections. Springer, Berlin Heidelberg New York, p 81

    Google Scholar 

  • Bracewell RN, Riddle AC (1967) Inversion of Fan-Beam scans in radio astronomy. The Astrophysical J 150: 427–434

    Article  Google Scholar 

  • Bracewell RN, Wernecke Si (1975) Image reconstruction over a finite field of view. J Opt Soc Am 65: 1342–1346

    Article  Google Scholar 

  • Britton KE, Shapiro B, Elliott AT (1981) Clinical results of quantitative single photon emission tomography. In: IAEA (ed) Medical radionuclide imaging 1980. vol I. IAEA, Vienna, p 263

    Google Scholar 

  • Brookeman VA, Maisey MN (1982) Performance characteristics of seven-pinhole tomography. Br J Radiol 55: 229–235

    Article  PubMed  CAS  Google Scholar 

  • Brooks RA, Di Chiro G (1975) Theory of image reconstruction in computed tomography. Radiology 117: 561–572

    PubMed  CAS  Google Scholar 

  • Brooks RA, Di Chiro G (1976) Principles of computer assisted tomography (CAT) in radiographic and radioisotopic imaging. Phys Med Biol 21: 689–732

    Article  PubMed  CAS  Google Scholar 

  • Brooks RA, Weiss GH, Talbert AJ (1978) A new approach to interpolation in CT. J Comput Assist Tomogr 2: 577–585

    Article  PubMed  CAS  Google Scholar 

  • Brooks RA, Sank VJ, Talbert AJ, Di Chiro G (1979 a) Sampling requirements and detector motion for positron emission tomography. IEEE Trans Nucl Sci NS-26/2:2760–2763

    Google Scholar 

  • Brooks RA, Glover GH, Talbert Ai, Eisner RL, Di Bianca FA (1979 b) Aliasing: A source of streaks in computed tomograms. J Comput Assist Tomogr 3:511–518

    Article  PubMed  CAS  Google Scholar 

  • Brooks RA, Sank VJ, Di Chiro G, Friauf WS, Leighton SB (1980) Design of a high resolution positron emission tomograph: The Neuro-PET. J Comput Assist Tomogr 4: 5–13

    Article  PubMed  CAS  Google Scholar 

  • Brooks RA, Sank VJ, Friauf WS, Leighton SB, Cascio HE, Di Chiro G (1981) Design considerations for positron emission tomography. IEEE Trans Biomed Eng BME-28/2: 158–176

    Google Scholar 

  • Brooks RA, Sank VJ, Di Chiro G, Friauf WS, Leighton SB, Cascio HE (1982) The neuro-PET: A new high resolution 7-Slice positron emission tomograph. In: Raynaud C (ed) Nuclear medicine and biology I. Pergamon, Paris, p 550

    Google Scholar 

  • Brown ML, Keyes JW Jr, Leonard PF, Thrall JH, Kircos LT (1977) Facial bone scanning by emission tomography. J Nucl Med 18: 1184–1188

    PubMed  CAS  Google Scholar 

  • Brownell GL, Burnham CA (1973) MGH positron camera. In: Freedman GS (ed) Tomographic imaging in nuclear medicine. Soc Nucl Med Inc, New York, p 154

    Google Scholar 

  • Brownell GL, Burnham CA, Wilensky S, Aronow S, Kazemi H, Strieder D (1969) New developments in positron scintigraphy and the application of cyclotron-produced positron emitters. In: IAEA (ed) Medical radioisotope scintigraphy. IAEA, Vienna, p 163

    Google Scholar 

  • Brownell GL, Burnham CA, Chesler DA, Correia JA, Correll JE, Hoop B Jr, Parker JA, Subramanyam R (1977) Transverse section imaging of radionuclide distributions in heart, lung, and brain. In: Ter-Pogossian MM, et al (eds) Reconstruction tomography in diagnostic radiology and nuclear medicine. Park, Baltimore, p 293

    Google Scholar 

  • Brownell GL, Correia JA, Zamenhof RG (1978) Positron instrumentation. In: Lawrence JH, Budinger TF (eds) Recent advantages in nuclear medicine, vol 5. Grune & Stratton, New York, pp 1–49

    Google Scholar 

  • Brownell G, Burnham C, Correia J, Chesler D, Akkerman R, Tavares J (1979) Transverse section imaging with the MGH positron camera. IEEE Trans Nucl Sci NS-26/2: 2698–2702

    Google Scholar 

  • Brownell GL, Kearfott KJ, Kairento AL, Elmaleh DR, Alpert NM, Correia JA, Wechsler L, Ackerman RH (1983) Quantitation of regional cerebral glucose metabolism. J Comput Assist Tomogr 7: 919–924

    Article  PubMed  CAS  Google Scholar 

  • Brunol J, Fonroget J, Roucayrol JC, Beaucoudry N de (1978) A high resolution computed tomography for nuclear medicine using a multipinhole collimator. In: Schmidt HAE, Woldring M (Hrsg) Nuklearmedizin 1977. Schattauer, Stuttgart, S 64

    Google Scholar 

  • Budinger TF (1977) Instrumentation trends in nu- clear medicine. Semin Nucl Med 7: 285–297

    Article  PubMed  CAS  Google Scholar 

  • Budinger TF (1980) Physical attributes of single-photon tomography. J Nucl Med 21: 579–592

    PubMed  CAS  Google Scholar 

  • Budinger TF (1981) Revival of clinical nuclear medi- cine brain imaging. J Nucl Med 22: 1094–1097

    PubMed  CAS  Google Scholar 

  • Budinger TF ( 1982 a) Single photon emission tomography. In: Raynaud C (ed) Nuclear medicine and biology II. Pergamon, Paris, p 1159

    Google Scholar 

  • Budinger TF (1982 b) Three-dimensional display techniques: Description and critique of methods. In: Raynaud C (ed) Nuclear medicine and biology II. Pergamon, Paris, p 2185

    Google Scholar 

  • Budinger TF (1983 a) Time-of-flight positron emission tomography: Status relative to conventional PET. J Nucl Med 24:73–78

    Google Scholar 

  • Budinger TF (1983b) Positron emission tomography. In: Moss AA (ed) NMR, interventional radiology, and diagnostic imaging modalities. UCLA, San Francisco, p 149

    Google Scholar 

  • Budinger TF, Gullberg GT (1974 a) Three-dimensional reconstruction in nuclear medicine emission imaging. IEEE Trans Nucl Sci Ns-21: June 2–20

    Google Scholar 

  • Budinger TF, Gullberg GT (1974 b) Three-dimensional reconstruction in nuclear medicine by iterative least-squares and fourier transform techniques. Lawrence Berkeley Lab Rep LBL-2146

    Google Scholar 

  • Budinger TF, Gullberg GT (1977) Transverse section reconstruction of y-Ray emitting radionuclides in patients. In: Ter-Pogossian MM, Phelps ME, Brownell GL, Cox JR, Davis DO, Evans RG (eds) Reconstruction tomography in diagnostic radiology and nuclear medicine. University Park Press, Baltimore, pp 315–342

    Google Scholar 

  • Budinger TF, Macdonald B (1975) Reconstruction of the fresnel-coded gamma camera images by digital computer. J Nucl Med 16: 309–313

    PubMed  CAS  Google Scholar 

  • Budinger TF, Gullberg GT, Nohr ML, McRae J, Anger HO (1973) Quantitative sequential imaging of radionuclide distribution using the whole-body scanner and the gamma camera: Absolute accuracy and aspects of three-dimensional reconstruction. Lawrence Berkeley Lab Rep LBL-2161

    Google Scholar 

  • Budinger TF, Gullberg GT, Nohr ML, McRae J, Anger HO (1974) Quantitative sequential imaging of radionuclide distribution using the whole-body scanner and the gamma camera: Absolute accuracy and aspects of three-dimensional reconstruction. In: Pabst HW (Hrsg) Nuklearmedizin 1973. Schattauer, Stuttgart, S 2

    Google Scholar 

  • Budinger TF, Derenzo SE, Gullberg GT, Greenberg WL, Huesman RH (1977a) Emission computer assisted tomography with single-photon and positron annihilation photon emitters. J Comput Assist Tomogr 1: 131–145

    Article  CAS  Google Scholar 

  • Budinger TF, Cahoon JL, Derenzo SE, Gullberg GT, Moyer BR, Yano Y (1977b) Three dimensional imaging of the myocardium with radionuclides. Radiology 125: 433–439

    CAS  Google Scholar 

  • Budinger TF, Derenzo SE, Greenberg WL, Gullberg GT, Huesman RH (1978) Quantitative potentials of dynamic emission computed tomography. J Nucl Med 19: 309–315

    PubMed  CAS  Google Scholar 

  • Budinger TF, Gullberg GT, Huesman RH (1979 a) Emission computed tomography. In: Herman GT (ed) Image reconstruction from projections. Springer, Berlin Heidelberg New York, p 147

    Google Scholar 

  • Budinger TF, Derenzo SE, Gullberg GT, Huesman RH (1979b) Trends and prospects for circular ring positron cameras. IEEE Trans Nucl Sci NS-26: 2742–2745

    Google Scholar 

  • Budinger TF, Derenzo SE, Huesman RH, Cahoon JL, Yano Y (1980) Dynamic emission transaxial

    Google Scholar 

  • tomography for positron emitters. In: Horst W, Wagner HN Jr, Buchanan J (eds) Frontiers in nuclear medicine. Springer, Berlin Heidelberg New York, p 52

    Google Scholar 

  • Budinger TF, Derenzo SE, Huesman RH, Cahoon JL (1982) Medical criteria for the design of a dynamic positron tomograph for heart studies. IEEE Trans Nucl Sci NS-29/1: 488–492

    Google Scholar 

  • Büll U, Kirsch CM, Roedler HD (1983a) Die SinglePhoton-Emissions-Computertomographie (SPECT). Prinzipien, Ergebnisse, Ausblick. Fortschr Röntgenstr 138: 391–402

    Article  Google Scholar 

  • Büll U, Moser EA, Kirsch CM, Schmiedek P (1983 b) Xe-133-DSPECT (Dynamische Single Photon Emission CT). Fortschr Rüntgenstr 139:351–358

    Google Scholar 

  • Burdine JA, Murphy PH, Puey EG de (1979) Radionuclide computed tomography of the body using routine radiopharmaceuticals. II. Clinical applications. J Nucl Med 20: 108–114

    PubMed  CAS  Google Scholar 

  • Burnham CA, Brownell GL (1972) A multi-crystal positron camera. IEEE Trans Nucl Sci NS-19/ 3: 201–205

    Article  Google Scholar 

  • Burnham C, Bradshaw J, Kaufman D, Chesler D, Brownell GL (1981) One dimensional scintillation camera for positron ECT ring detectors. IEEE Trans Nucl Sci Ns-28/1: 109–113

    Google Scholar 

  • Burnham C, Bradshaw J, Kaufman D, Chesler D, Brownell G (1982) Application of a one-dimensional scintillation camera in a positron tomographic ring detector. IEEE Trans Nucl Nucl Sci NS-29: 461–464

    Article  Google Scholar 

  • Burnham C, Bradshaw J, Kaufman D, Chesler D, Brownell GL (1983) A positron tomograph employing a one dimension BGO scintillation camera. IEEE Trans Nucl Sci NS-30: 661–664

    Article  Google Scholar 

  • Burnham CA, Bradshaw J, Kaufman D, Chesler D, Brownell GL (1984) A stationary positron emission ring tomograph using BGO detector and analog readout. IEEE Trans Nucl Sci NS-31: 632–636

    Article  Google Scholar 

  • Carril JM, Mac Donald AF, Dendy PP, Keyes WI, Undrill PE, Mallard JR (1979) Cranial scintigraphy: Value of adding emission computed tomo-graphic sections to conventional pertechnetate images (512 cases). J Nucl Med 20: 1117–1123

    PubMed  CAS  Google Scholar 

  • Carroll LR (1978) Design and performance characteristics of a production model positron imaging system. IEEE Trans Nucl Sci NS-25/1: 606–614

    Google Scholar 

  • Carroll LR, Kretz P, Orcutt G (1983) The orbiting rod source: Improving performance in PET transmission correction scans. In: Esser PD (ed) Emission computed tomography. Soc Nucl Med, New York, p 235

    Google Scholar 

  • Cassen B (1969) Image formation by electronic cross-time correlation of signals from angular ranges of unfocused collimating channels. In: IAEA (ed) Medical radioisotope scintigraphy. IAEA, Vienna, p 107

    Google Scholar 

  • Celsis P, Goldman T, Henriksen L, Lassen NA (1981) A method for calculating regional cerebral blood flow from emission computed tomography of inert gas concentrations. J Comput Assist Tomogr 5: 641–645

    Article  PubMed  CAS  Google Scholar 

  • Chang LT (1978) A method for attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sci NS-25/1: 638–643

    Google Scholar 

  • Chang LT (1979) Attenuation correction and incomplete projection in single photon emission computed tomography. IEEE Trans Nucl Sci NS-26/ 2: 2780–2789

    Article  Google Scholar 

  • Chang LT, Mac Donald B, Perez-Mendez V (1976) Axial tomography and three dimensional image reconstruction. IEEE Trans Nucl Sci NS-23/ 1: 568–572

    Article  Google Scholar 

  • Chang W, Henkin RE (1980) Seven-pinhole multi-gated tomography and its application to blood-pool imaging: Technical parameters. J Nucl Med 21: 682–688

    PubMed  CAS  Google Scholar 

  • Chang W, Lin SL, Henkin RE (1982) A new collimator for cardiac tomography: The quadrant slant-hole collimator. J Nucl Med 23: 830–835

    PubMed  CAS  Google Scholar 

  • Chen CT, Metz CE (1984) Evaluation and comparison of image reconstruction algorithms for positron emission tomography with time-of-flight information (TOFPET). Proc of the IEEE, Int Symp on Medical Images and Icons, pp 388393

    Google Scholar 

  • Chesler DA (1971) Three-dimensional activity distribution from multiple positron scintigraphs. J Nucl Med 12: 347–348 (Abs)

    Google Scholar 

  • Chesler DA (1973) Positron tomography and three-dimensional reconstruction technique. In: Freedman GS (ed) Tomographic imaging in nuclear medicine. Soc Nucl Med Inc, New York, p 176

    Google Scholar 

  • Chesler DA (1982) Noise power spectrum in time-offlight tomography. In: IEEE (ed) 1982 workshop on time-of-flight tomography. IEEE Computer Soc, Los Angeles, p 113–116

    Google Scholar 

  • Chesler DA, Riederer SJ (1975) Ripple suppression during reconstruction in transverse tomography. Phys Med Biol 20: 632–636

    Article  PubMed  CAS  Google Scholar 

  • Chesler DA, Riederer SJ, Pelc NJ (1977) Noise due to photon counting statistics in computed X-Ray tomography. J Comput Assist Tomogr 1: 64–77

    Article  PubMed  CAS  Google Scholar 

  • Cho ZH, Farukhi MR (1977) Bismuth germanate as a potential scintillation detector in positron cameras. J Nucl Med 18: 840–844

    PubMed  CAS  Google Scholar 

  • Cho ZH, Chan JK, Eriksson L, Singh M, Graham S, MacDonald NS, Yano Y (1975) Positron ranges obtained from biomedically important positron-emitting radionuclides. J Nucl Med 16: 11741176

    Google Scholar 

  • Cho ZH, Chan JK, Eriksson L (1976) Circular ring transverse axial positron camera for 3-dimensional reconstruction of radionuclides distribution. IEEE Trans Nucl Sci NS-23/1: 613–622

    Google Scholar 

  • Cho ZH, Cohen MB, Singh M, Eriksson L, Chan J, MacDonald N, Spolter L (1977a) Performance and evaluation of the circular ring transverse axial positron camera (CRTAPC). In: IAEA (ed )

    Google Scholar 

  • Medical radionuclide imaging, vol I. IAEA, Vienna, p 269

    Google Scholar 

  • Cho ZH, Cohen MB, Singh M, Eriksson L, Chan J, MacDonald N, Spolter L (1977b) Performance and evaluation of the circular ring transverse axial positron camera (CRTAPC). IEEE Trans Nucl Sci NS-24/1: 532–543

    Google Scholar 

  • Cho ZH, Nalcioglu O, Farukhi MR (1978) Analysis of a cylindrical hybrid positron camera with bismuth germanate (BGO) scintillation crystals. IEEE Trans Nucl Sci NS-25/2: 952–963

    Article  Google Scholar 

  • Cho ZH, Hong KS, Ra JB, Lee SY (1981) A new sampling scheme for the ring positron camera: Dichotomie ring sampling. IEEE Trans Nucl Sci NS-28/1: 94–98

    Article  Google Scholar 

  • Cho ZH, Yi W, Jung KJ, Lee BU, Min HB, Song HB (1982) Performance of single photon tomo-graphic system — Gammatom-1. IEEE Trans Nucl Sci NS-29: 484–487

    Article  Google Scholar 

  • Cho ZH, Hilal SK, Ra JB, Hong KS, Bigler RE, Yoshizumi T, Wolf AP, Fowler JS (1983 a) High-resolution circular ring positron tomograph with dichotomic sampling: dichotom-I. Phys Med Biol 28:1219–1234

    Article  CAS  Google Scholar 

  • Cho ZH, Ra JB, Hilal SK (1983 b) True three-dimensional reconstruction (TTR) ü Application of algorithm toward full utilization of oblique rays. IEEE Trans Med Imag MI-2:6–18

    Article  CAS  Google Scholar 

  • Cho ZH, Hilal SK, Ra JB, Hong KS, Lee HS (1983 c) Experimental results of the dichotomie sampling in circular ring positron emission tomography. IEEE Trans Nucl Sci NS-20/3:1892–1898

    Google Scholar 

  • Chu G, Tam KC (1977) Three-dimensional imaging in the positron camera using fourier techniques. Phys Med Biol 22: 245–265

    Article  PubMed  CAS  Google Scholar 

  • Chu D, Tam KC, Perez-Mendez V, Lim CB, Lambert D, Kaplan SN (1976) High-efficiency collimator-converters for neutral particle imaging with MWPC. IEEE Trans Nucl Sci NS-23/1: 634–639

    Google Scholar 

  • Chu D, Tam K, Perez-Mendez V, Kaplan SN, Lim C, Hattner R, Kaufman L, Price D, Swan S (1977) High efficiency gamma converters and their application in an MWPC positron camera. In: IAEA (ed) Medical Radionuclide Imaging, vol I. IAEA, Vienna, p 171

    Google Scholar 

  • Chung V, Chak KC, Zacuto P, Hart HE (1980) Multiple photon coincidence tomography. Semin Nucl Med X: 345–354

    Google Scholar 

  • Coleman RE, Jaszczak RJ, Cobb FR (1982a) Coinparisonmof 180° and 360° data collection in Thallium-201 imaging using single-photon emission computerized tomography (SPECT): Concise communication. J Nucl Med 23: 655–660

    CAS  Google Scholar 

  • Coleman RE, Drayer BP, Jaszczak RJ (1982b) Studying regional brain function: A challenge for SPECT. J Nucl Med 23: 266–270

    CAS  Google Scholar 

  • Coleman RE, Greer KL, Drayer BP, Albright RE, Petry NA, Jaszczak RJ (1983) Collimation for I-123 imaging with SPECT. In: Esser PD (ed) Emission computed tomography: Current trends. Soc Nucl Med, New York, p 135

    Google Scholar 

  • Colsher JG (1980) Fully three-dimensional positron emission tomography. Phys Med Biol 25: 103–115

    Article  PubMed  CAS  Google Scholar 

  • Colsher JG, Muehllehner G (1981) Effects of wobbling motion on image quality in positron tomography. IEEE Trans Nucl Sci NS-28/1: 90–93

    Article  Google Scholar 

  • Condon B, Mills J, Ardley R, Taylor D (1983) A physical comparison of two fixed-angle emission tomographic cardiac imaging systems. Phys Med Biol 28: 131–138

    Article  PubMed  CAS  Google Scholar 

  • Cooke BE, Evans AC, Fanthome EO, Alarie R, Sendyk AM (1984) Performance figures and images from the Therascan 3128 positron emission torno-graph. IEEE Trans Nucl Sci NS-31: 640–644

    Article  Google Scholar 

  • Cormack AM (1963) Representation of a function by its line integrals, with some radiological applications. J Appl Physiol 34: 2722–2727

    Article  Google Scholar 

  • Cormack AM (1973) Reconstruction of densities from their projections, with application in radiological physics. Phys Med Biol 18: 195–207

    Article  PubMed  CAS  Google Scholar 

  • Cormack AM (1980) Early two-dimensional reconstruction (CT-scanning) and recent topics stemming from it. Nobel lecture, December 8, 1979. J Comput Assist Tomogr 4: 658–664

    Article  PubMed  CAS  Google Scholar 

  • Cowan RJ, Watson NE (1980) Special characteristics and potential of single photon emission computed tomography in the brain. Semin Nucl Med X: 335–344

    Google Scholar 

  • Crawford CR, Kak AC (1979) Aliasing artifacts in computerized tomography. Appl Opt 18: 3704–3711

    Article  PubMed  CAS  Google Scholar 

  • Del Guerra A, Lim CB, Lum GK, Ortendahl D, Perez-Mendez V (1982a) Medical positron imaging with a dense drift space multi wire proportional chamber. IEEE Trans Med Imag MI-1/1: 4–11

    Google Scholar 

  • Del Guerra A, Bellazzini R, Tonelli G, Venturi R, Nelson WR (1982b) A detailed monte carlo study of multiple scattering contamination in compton tomography at 90°. IEEE Trans Med Imag MI-1: 147–152

    Google Scholar 

  • Derenzo SE (1979) Precision measurement of annihilation point spread distributions for medically important positron emitters. In: Hasiguti RR, Fujiwara K (eds) Proc 5th Int Conf on Positron Annihilation. The Japan Institute of Metals, p 819

    Google Scholar 

  • Derenzo SE, Zaklad H, Budinger TF (1975) Analytical study of a high-resolution positron ring detector system for transaxial reconstruction tomography. J Nucl Med 16: 1166–1173

    PubMed  CAS  Google Scholar 

  • Derenzo SE, Budinger TF, Cahoon JL, Huesman RH, Jackson HG (1977) High resolution computed tomography of positron emitters. IEEE Trans Nucl Sci NS-24/1: 544–558

    Google Scholar 

  • Derenzo SE, Budinger TF, Cahoon JL, Greenberg WL, Huesman RH, Vuletich T (1979) The donner 280-crystal high resolution positron tomograph. IEEE Trans Nucl Sci NS-26/2: 2790–2793

    Google Scholar 

  • Derenzo SE, Budinger TF, Huesman RH, Cahoon JL, Vuletich T (1981) Imaging properties of a po-sitron tomograph with 280 BGO crystals. IEEE Trans Nucl Sci NS-28/1: 81–89

    Google Scholar 

  • Derenzo SE, Budinger TF, Huesman RH, Cahoon JL (1982) Dynamic positron emission tomography in man using small bismuth germanate crystals. In: Coleman PG, Sharma SC, Diana LM (eds) Positron annihilation. North-Holland, Amsterdam, p 935

    Google Scholar 

  • Derenzo SE, Budinger TF, Vuletich T (1983) High resolution positron emission tomography using small bismuth germanate crystals and individual photosensors. IEEE Trans Nucl Sci NS-30: 665–670

    Google Scholar 

  • Di Chiro G, Oldfield E, Bairamian D, Patronas NJ, Brooks RA, Mansi L, Smith BH, Kornblith PL, Margolin R (1983) Metabolic imaging of the brain stem and spinal cord: Studies with positron emission tomograph using F-18–2-Deoxyglucose in normal and pathological cases. J Comput Assist Tomogr 7: 937–945

    Article  PubMed  Google Scholar 

  • Döring V, Hahn R, Sauer J (1983) Meßtechnische Probleme bei der J-123-Szintigraphie. Nuc Corn-pact 14: 362–370

    Google Scholar 

  • Doria D, Singh M (1982) Comparison of reconstruction algorithms for an electronically collimated gamma camera. IEEE Trans Nucl Sci NS-29/ 1: 447–451

    Article  Google Scholar 

  • Drayer B, Jaszczak R, Friedman A, Albright R, Kung H, Greer K, Lischko M, Petry N, Coleman E (1983) In vivo quantitation of regional cerebral blood flow in glioma and cerebral infarction: Validation of the HIPDm–SPECT method. AJNR 4: 572–576

    PubMed  CAS  Google Scholar 

  • Egbert SD, May RS (1980) An integral-transport method for compton-scatter correction in emission computed tomography. IEEE Trans Nucl Sci NS-27/1: 543–548

    Google Scholar 

  • Eichling JO, Higgins CS, Ter-Pogossian MM (1977) Determination of radionuclide concentrations with positron CT scanning (PETT): Concise communication. J Nile! Med 18: 845–847

    CAS  Google Scholar 

  • Ell PJ, Todd-Pokropek A, Williams ES (1978) The future of non-invasive medical imaging. Fortschr Röntgenstr 128: 486–490

    Article  CAS  Google Scholar 

  • Ell PJ, Khan O (1981) Emission computerized tomography: clinical applications. Semin Nucl Med XI: 50–60

    Google Scholar 

  • Ell PJ, Williams ES, Deacon JM (1980) Clinical efficacy study of ECAT and TCAT brain scans in 118 patients. In: Höfer R, Bergmann H (Hrsg) Radioaktive Isotope in Klinik and Forschung 14. Egermann, Wien, S 245

    Google Scholar 

  • Ell PJ, Jarritt J, Cullum I (1982) Present trends of single photon radionuclide tomography. Fortschr Röntgenstr 136: 330–336

    Article  CAS  Google Scholar 

  • Endo M, Iinuma TA (1984) Software correction of scatter coincidence in positron CT. Eur J Nucl Med 9: 391–396

    Article  PubMed  CAS  Google Scholar 

  • Ericson K, Bergstrom M, Eriksson L (1980) Positron emission tomography in the evaluation of subdu-rai hematomes. J Comput Assist Tomogr 4: 737–745

    Article  PubMed  CAS  Google Scholar 

  • Eriksson L, Cho ZH (1976) Efficiency optimization analysis for dynamic function studies with 3-D transaxial positron cameras. Comput Biol Med 6: 361–372

    Article  PubMed  CAS  Google Scholar 

  • Eriksson L, Bohm C, Bergström M, Ericson K, Greitz T, Litton J, Widen L (1980) One year experience with a high resolution ring detector positron camera system: Present status and future plans. IEEE Trans Nucl Sci NS-27/1: 435–444

    Google Scholar 

  • Eriksson L, Bohm C, Kesselberg M, Blomqvist G, Litton J, Widen L, Bergström M, Ericson K, Greitz T (1982) A four ring positron camera system for emission tomograph of the brain. IEEE Trans Nucl Sci NS-29/1: 539–543

    Google Scholar 

  • Feine U, Anger K, Müller-Schauenburg W, Milward RC (1977) Erste klinische Erfahrungen mit einem axialen Emissions-Computer-Tomographen. Fortschr Röntgenstr 127: 358–365

    Article  CAS  Google Scholar 

  • Firusian N, Schmidt CG (1979) Ergebnisse der Emissions-Computer-Tomographie der Leber bei 113 bioptisch untersuchten Patienten. Nucl Med XVIII: 65–72

    Google Scholar 

  • Flower MA, Parker RP (1980) Quantitative imaging using the cleon emission tomography system. Radiology 137: 535–539

    PubMed  CAS  Google Scholar 

  • Floyd CE, Jaszczak RJ, Harris CC, Coleman RE (1984) Energy and spatial distribution of multiple order Compton scatter in SPECT: a Monte Carlo investigation. Phys Med Biol 29: 1217–1230

    Article  PubMed  CAS  Google Scholar 

  • Frackowiak RSJ, Lenzi GL, Jones T, Heather JD (1980) Quantitative measurement of RCBF and oxygen metabolism in man using 0–15 and positron emission tomography: Theory, procedure, and normal values. J Comput Assist Tomogr 4: 727–736

    Article  PubMed  CAS  Google Scholar 

  • Freedman GS (1970) Tomography with a gamma camera. J Nucl Med 11: 602–604

    PubMed  CAS  Google Scholar 

  • Freedman GS (1973) Digital gamma camera tornography-theory. In: Freedman GS (ed) Tomographic imaging in nuclear medicine. Soc Nucl Med Inc, New York, p 68

    Google Scholar 

  • Frieden BR (1975) Image enhancement and restoration. In: Huang TS (ed) Picture processing and digital filtering. Springer, Berlin Heidelberg New York, p 177

    Google Scholar 

  • Friedland RP, Budinger TF, Ganz E, Yano Y, Mathis CA, Koss B, Ober BA, Huesman RH, Derenzo SE (1983) Regional cerebral metabolic alterations in dementia of the Alzheimer type: Positron emission tomography with (F-18)fluorodeoxyglucose. J Comput Assist Tomogr 7: 590–598

    Article  PubMed  CAS  Google Scholar 

  • Gariod R, Allemand R, Cormoreche E, Laval M, Moszynski M (1982) The „LETI“ positron tomo-graph architecture and time-of-flight improvements. In: IEEE (ed) 1982 workshop on time-offlight tomography. IEEE Computer Soc, Los Angeles, p 25

    Google Scholar 

  • Genna S, Pang SC, Smith A (1982) Digital scintigraphy: concepts and designs. IEEE Trans Nucl Sci NS-29: 558–562

    Google Scholar 

  • Gilbert P (1972) Iterative methods for the three-dimensional reconstruction of an object from projections. J Theor Biol 36: 105–117

    Article  PubMed  CAS  Google Scholar 

  • Gindi GR, Arendt J, Barrett HH, Chiu MY, Ervin A, Giles CL, Kujoory A, Miller EL, Simpson RG (1982) Imaging with rotating slit apertures and rotating collimators. Med Phys 9: 324–339

    Article  PubMed  CAS  Google Scholar 

  • Goitein M (1972) Three-dimensional density reconstruction from a series of two-dimensional projections. Nucl Instr Meth 101: 509–518

    Article  Google Scholar 

  • Goldstein RA (1982) Myocardial metabolic imaging: a new diagnostic era — teaching editorial. J Nucl Med 23: 641–644

    PubMed  CAS  Google Scholar 

  • Goodman MM, Elmaleh DR, Kearfott KJ, Ackerman RH, Hoop B, Brownell GL, Alpert NM, Strauss HW (1981) F-18-Labeled 3-Deoxy-3Fluoro-D-Glucose for the study of regional metabolism in the brain and heart. J Nucl Med 22: 138–144

    PubMed  CAS  Google Scholar 

  • Gordon R (1974) A tutorial on ART. IEEE Trans Nucl Sci NS-21/3: 78–93

    Google Scholar 

  • Gordon R, Herman GT (1974) Three-dimensional reconstruction from projections: a review of algorithms. Int Rev Cytol 38: 111–151

    Article  PubMed  CAS  Google Scholar 

  • Gordon R, Bender R, Herman GT (1970) Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-Ray photography. J Theor Biol 29: 471–481

    Article  PubMed  CAS  Google Scholar 

  • Gore JC, Leeman S (1980) The reconstruction of objects from incomplete projections. Phys Med Biol 25: 129–136

    Article  PubMed  CAS  Google Scholar 

  • Gottschalk S, Salem D (1982) Effect of an elliptical orbit on SPECT resolution and image uniformity. In: Raynaud C (ed) Nuclear medicine and biology I. Pergamon, Paris, p 1026

    Google Scholar 

  • Gottschalk SC, Salem D, Lim CB, Wake RH (1983) SPECT resolution and uniformity improvements by noncircular orbit. J Nucl Med 24: 822–828

    PubMed  CAS  Google Scholar 

  • Gullberg GT (1979) The attenuated radon transform: theory and application in medicine and biology. Thesis, Univ of California, Berkeley

    Google Scholar 

  • Gullberg GT, Budinger TF (1981) The use of filtering methods to compensate for constant attenuation in single photon emission computed tomography. IEEE Trans Biomed Eng BME-28/2: 142–157

    Google Scholar 

  • Gullberg GT, Malko JA, Eisner RL (1983) Boundary determination methods for attenuation correction in single photon emission computed tomography. In: Esser PD (ed) Emission computed tomography. Soc Nucl Med, New York, p 33

    Google Scholar 

  • Harding G (1982) On the sensitivity and application possibilities of a novai compton scatter Imaging System. IEEE Trans Nucl Sci NS-29: 1260–1265

    Google Scholar 

  • Harper PV (1968) The three-dimensional reconstruction of isotope distributions. In: Gottschalk A, Beck TN (eds) Fundamental problems in scanning Thomas, Springfield, p 191

    Google Scholar 

  • K. JORDAN: Meütechnik in der Emissions-Computertomographie

    Google Scholar 

  • Harper PV, Beck RN, Charleston DE, Brunsden B, Lathrop KA (1965) The three dimensional mapping and display of radioisotope distributions. J Nucl Med 6: 332 (Abs)

    Google Scholar 

  • Harris FJ (1978) On the use of windows for harmonic analysis with the discrete fourier transform. Proc of the IEEE 66: 51

    Article  Google Scholar 

  • Hart HE, Rudin S (1977) Three-dimensional imaging of multimillimeter sized cold lesions by focusing collimator coincidence scanning (FCCS). IEEE Trans Biomed Eng BME-24: 169–177

    Google Scholar 

  • Hasegawa B, Kirch D, Stern D, Adams M, Sklar J, Johnson T, Steele P (1982) Single-photon emission tomography with a 12-Pinhole collimator. J Nucl Med 23: 606–612

    PubMed  CAS  Google Scholar 

  • Hedde JP, Reischies FM, Felix R, Helmchen H, Kanowski S (1982) Untersuchungen der regionalen Hirndurchblutung mit dem dynamischen Emissions-Computertomographen nach Inhalation von Xenon-133. Nuc Compact 13: 309–312

    Google Scholar 

  • Hedde JP, Reischies FM, Fiegler W, Felix R, Helmchen H, Kanowski S (1984) Tomographische nicht-invasive Messung der regionalen Hirndurchblutung. Fortschr Röntgenstr 140: 128–135

    Article  CAS  Google Scholar 

  • Heffernan PB, Robb RA (1983) Image reconstruction from incomplete projection data: Iterative reconstruction-reprojection techniques. IEEE Trans Biomed Eng BME-30/12: 838–841

    Google Scholar 

  • Helmers H, Boetticher H von, Schmitz-Feuerhake I (1982) Depth–discrimination in direct 3D-scanning without image reconstruction using a coincidence technique. Eur J Nucl Med 7: 324–326

    Article  PubMed  CAS  Google Scholar 

  • Henriksen L, Lassen NA, Paulson OB (1980) Dynamic single photon emission tomography of the brain by Xenon-133 inhalation. Preliminary clinical studies. In: Höfer R, Bergman (Hrsg) Radioaktive Isotope in Klinik und Forschung 14. Egermann, Wien, S 463

    Google Scholar 

  • Herman GT (1979 a) The mathematics of wobbling a ring of positron annihilation detectors. IEEE Trans Nucl Sci NS-26/2:2756–2759

    Google Scholar 

  • Herman GT (1979b) Data collection for cross-sectional image reconstruction by a moving ring of positron annihilation detectors. J Comput Assist Tomogr 3: 261–266

    Article  CAS  Google Scholar 

  • Herman GT, Lung HP (1980) Reconstruction from divergent beams: A comparison of algorithms with and without rebinning. Comput Biol Med 10: 131–139

    Article  PubMed  CAS  Google Scholar 

  • Herman GT, Naparstek A (1977) Fast image reconstruction based on a Radon inversion formula appropriate for rapidly collected data. SIAM J Appl Math 33: 511–533

    Article  Google Scholar 

  • Herman GT, Rowland SW (1973) Three methods for reconstructing objects from X-Rays: A comparative study. Comp Graph Image Proc 2: 151–178

    Article  Google Scholar 

  • Herman GT, Lakshminarayanan AV, Naparstek A (1976) Convolution reconstruction techniques for divergent beams. Comput Biol Med 6: 259–271

    Article  PubMed  CAS  Google Scholar 

  • Herman GT, Rowland SW, Yau M (1979) A comparative study of the use of linear and modified cubic spline interpolation for image reconstruction. IEEE Trans Nucl Sci NS-26/2: 2879–2893

    Google Scholar 

  • Herscovitch P, Markham J, Raichle ME (1983) Brain blood flow measured with intravenous H2O-15. I. theory and error analysis. J Nucl Med 24: 782–789

    PubMed  CAS  Google Scholar 

  • Higa T, Tanada S, Taki W, Fukuyama H, Ishii Y, Fujita T, Yonekawa Y, Odori T, Mukai T, Handa H, Kameyama M, Morita R, Torizuka K (1983) Superimposition of Krypton-81m single photon emission CT and X-Ray CT images for cerebral blood flow evaluation. J Comput Assist Tomogr 7: 37–41

    Article  PubMed  CAS  Google Scholar 

  • Hill TC, Costello P, Gramm HF, Lovett R, McNeil BJ, Treves S (1978) Early clinical experience with a radionuclide emission computed tomographic brain imaging system. Radiology 128: 803–806

    PubMed  CAS  Google Scholar 

  • Hirose Y, Ikeda Y, Higashi Y, Koga K, Hattori H, Kanno I, Miura Y, Miura S, Uemura K (1982) A hybrid emission CT–HEADTOME II. IEEE Trans Nucl Sci NS-29/1: 520–523

    Google Scholar 

  • Hoffman EJ (1982) 180ü compared with 360ü sampling in SPECT. J Nucl Med 23:745–747

    Google Scholar 

  • Hoffman EJ, Phelps ME, Mullani NA, Higgins CS, Ter-Pogossian MM (1976) Design and performance characteristics of a whole-body positron transaxial tomograph. J Nucl Med 17: 493–502

    Google Scholar 

  • Hoffman EJ, Phelps ME, Weiss ES, Welch MJ, Coleman RE, Sobel BE, Ter-Pogossian MM (1977) Transaxial tomographic imaging of canine myocardium with C-11-Palmitic acid. J Nucl Med 18: 57–61

    PubMed  CAS  Google Scholar 

  • Hoffman EJ, Huang SC, Phelps ME (1979a) Quantitation in positron emission computed tomography: 1. Effect of object size. J Comput Assist Tomogr 3: 299–308

    Article  CAS  Google Scholar 

  • Hoffman EJ, Phelps ME, Wisenberg G, Schelbert HR, Kuhl DE (1979 b) Electrocardiographic gating in positron emission computed tomography. J Comput Assist Tomogr 3:733–739

    Google Scholar 

  • Hoffman EJ, Phelps ME, Ricci AR, Huang SC, Kuhl DE (1979c) Optimization of system design parameters for emission computed tomography. IEEE/EMBS CH 1440–7 /79: 363–368

    Google Scholar 

  • Hoffman EJ, Phelps ME, Huang SC, Kuhl DE, Crabtree M, Burke M, Burgiss S, Keyser R, Highfill R, Williams C (1981 a) A new tomo-graph for quantitative positron emission computed tomography of the brain. IEEE Trans Nucl Sci NS-28/1:99–103

    Google Scholar 

  • Hoffman EJ, Huang SC, Phelps ME, Kuhl DE (1981 b) Quantitation in positron emission computed tomography: 4. Effect of accidental coincidences. J Comput Assist Tomogr 5:391–400

    Google Scholar 

  • Hoffman EJ, Huang SC, Plummer D, Phelps ME (1982) Quantitation in positron emission computer tomography: 6. Effect of nonuniform resolution. J Comput Assist Tomogr 6: 987–999

    Article  PubMed  CAS  Google Scholar 

  • Hoffman EJ, Phelps ME, Huang SC (1983 a) Performance Evaluation of a positron tomograph designed for brain imaging. J Nucl Med 24:245–257

    Google Scholar 

  • Hoffman EJ, Ricci AR, van der Stee L, Phelps ME (1983 b) ECAT III - Basic design considerations. IEEE Trans Nucl Sci NS-30:729–733

    Google Scholar 

  • Holman BL, Idoine JD, Sos TA, Tancrell R, Meester G de (1977) Tomographic scintigraphy of regional myocardial perfusion. J Nucl Med 18: 764–769

    PubMed  CAS  Google Scholar 

  • Holman BL, Hill TC, Wynne J, Lovett RD, Zimmerman RE, Smith EM (1979) Single-photon trans-axial emission computed tomography of the heart in normal subjects and in patients with infarction. J Nucl Med 20: 736–740

    PubMed  CAS  Google Scholar 

  • Houle S, Joy MLG (1977) Quantum utilization limits for collimators and coded apertures. IAEA-SM210/156. In: IAEA (ed) Medical radionuclide imaging, vol 1. IAEA, Vienna, pp 219–229

    Google Scholar 

  • Hounsfield GN (1972) A method of and apparatus for examination of a body by radiation such as X or gamma radiation. The Patent Office, London, Patent Specification 128–3915

    Google Scholar 

  • Hounsfield GN (1973) Computerized transverse axial scanning (tomography): part I. Description of system. Br J Radiol 46: 1016–1022

    Article  PubMed  CAS  Google Scholar 

  • Huang SC, Hoffman EJ, Phelps ME, Kuhl DE (1979) Quantitation in positron emission computed tomography: 2. Effects of inaccurate attenuation correction. J Comput Assist Tomogr 3: 804–814

    PubMed  CAS  Google Scholar 

  • Huang SC, Hoffman EJ, Phelps ME, Kuhl DE (1980) Quantitation in positron emission cornputed tomography: 3. Effect of sampling. J Comput Assist Tomogr 4: 819–826

    Article  PubMed  CAS  Google Scholar 

  • Huang SC, Carson RE, Phelps ME, Hoffman EJ, Schelbert HR, Kuhl DE (1981) A boundary method for attenuation correction in positron computed tomography. J Nucl Med 22: 627–637

    PubMed  CAS  Google Scholar 

  • Huang SC, Carson RE, Hoffman EJ, Kuhl DE, Phelps ME (1982 a) An investigation of a double-tracer technique for positron computerized tomography. J Nucl Med 23:816–822

    Google Scholar 

  • Huang SC, Frazee J, Carson RE, Mazziotta J, Phelps ME, Hoffman EJ, MacDonald N, Kuhl DE (1982b) An investigation of a tomographic technique for in vivo measurement of local cerebral blood flow and water partition coefficient. In: Raynaud C (ed) Nuclear medicine and biology H. Pergamon, Paris, p 1965

    Google Scholar 

  • Huesman RH (1977) The effects of a finite number of projections angles and finite lateral sampling of projections on the propagation of statistical errors in transverse section reconstruction. Phys Med Biol 22: 511–521

    Article  PubMed  CAS  Google Scholar 

  • Huesman RH, Cahoon JL (1980) Data acquisition, reconstruction and display for the donner 280-Crystal positron tomograph. IEEE Trans Nucl Sci NS-27/1: 474–478

    Google Scholar 

  • Huesman RH, Gullberg GT, Greenberg WL, Budinger TF (1977) Donner algorithms for reconstruction tomography. Lawrence Berkeley Laboratory, University of California, PUB 214

    Google Scholar 

  • Huesman RH, Derenzo SE, Budinger TF (1982) A two position sampling scheme for positron emission tomography. In: Raynaud C (ed) Nuclear medicine and biology I. Pergamon, Paris, p 542

    Google Scholar 

  • Hundeshagen H (1979) Entwicklung der Gerätetechnik und ihre Reflexion auf die nuklearmedizinisehe Praxis. In: Schmidt HAE, Ortiz Berrocal J (Hrsg) Nuklearmedizin 1978. Schattauer, Stuttgart, S 2

    Google Scholar 

  • Inouye T (1979) Image reconstruction with limited angle projection data. IEEE Trans Nucl Sci NS-26/2: 2666–2669

    Google Scholar 

  • Isenberg JF, Simon W (1978) Radionuclide axial tomography by half-backprojection. Phys Med Biol 23: 154–158

    Article  PubMed  CAS  Google Scholar 

  • Jahangir SM, Brill AB, Bizais YJC, Rowe RW (1983) Count-rate variations with orientation of camera detector. J Nucl Med 24: 356–359

    PubMed  CAS  Google Scholar 

  • Jarritt PH, Cullum ID (1983) Quality control of single photon emission tomographic systems. In: Mould RF (ed) Quality control of nuclear medicine instrumentation. The Hospital Physicists, Ass, London, p 81

    Google Scholar 

  • Jarritt PH, Ell PJ, Myers MJ, Brown NJG, Deacon JM (1979) A new transverse-section brain imager for single-gamma emitters. J Nucl Med 20: 319–327

    PubMed  CAS  Google Scholar 

  • Jarritt PH, Cullum ID, Ell PJ (1981) SPECT I - figures of merit for two multiple detector (single slice) and one area detector (multiple slice) single photon emission tomographic instruments. In: IAEA (ed) Medical radionuclide imaging 1980, vol I. IAEA, Vienna, p 243

    Google Scholar 

  • Jaszczak RJ (1982) Physical characteristics of SPECT systems, September, 1982. J Comput Assist Tomogr 6: 1205–1215

    Article  PubMed  CAS  Google Scholar 

  • Jaszczak RJ, Coleman RE (1980) Selected processing techniques for scintillation camera based SPECT systems. In: Soc Nucl Med, NY (ed) Single photon emission computed tomography. Soc Nucl Med, New York, p 45

    Google Scholar 

  • Jaszczak RJ, Murphy PH, Huard D, Burdine JA (1977) Radionuclide emission computed tomography of the head with Tc-99m and a sczintillation camera. J Nucl Med 18: 373–380

    PubMed  CAS  Google Scholar 

  • Jaszczak.RJ, Chang LT, Stein NA, Moore FE (1979 a) Whole-body single-photon emission computed tomography using dual, largefield-ofview scintillation cameras. Phys Med Biol 24:1123–1143

    Google Scholar 

  • Jaszczak RJ, Chang LT, Murphy PH (1979 b) Single Photon Emission Computed Tomography using Multi-Slice Fan Beam Collimators. IEEE Trans Nucl Sci NS-26/1:610–618

    Google Scholar 

  • Jaszczak RJ, Coleman RE, Lim CB (1980) Spect:Single photon emission computed tomography. IEEE Trans Nucl Sci NS-27/3: 1137–1153

    Google Scholar 

  • Jaszczak RJ, Coleman RE, Whitehead FR (1981) Physical factors affecting quantitative measurements using camera-based single photon emission computed tomography (SPECT). IEEE Trans Nucl Sci Ns-28: 69–80

    Google Scholar 

  • Jaszczak RJ, Greer K, Coleman RE (1982 a) Lesion detection with SPECT and conventional imaging in the presence of source motion. In: Raynaud C (ed) Nuclear medicine and biology I. Perga-mon, Paris, p 461

    Google Scholar 

  • Jaszczak RJ, Whitehead FR, Lim CB, Coleman RE (1982b) Lesion detection with single-photon emission computed tomography (SPECT) compared with conventional imaging. J Nucl Med 23: 97–102

    CAS  Google Scholar 

  • Jaszczak RJ, Greer K, Coleman RE (1983) SPECT system misalignment: Comparison of phantom and patient images. In: Esser PD (ed) Emission computed tomography. Soc Nucl Med, New York, p 57

    Google Scholar 

  • Jaszczak RJ, Greer KL, Carey CF, Harris CC, Coleman RE (1984) Improved SPECT quantification using compensation for scattered photons. J Nucl Med 25: 893–900

    PubMed  CAS  Google Scholar 

  • Jeavons A (1979) The CERN proportional chamber positron camera. In: Hasiguti RR, Fujiwara K (eds) Proc 5th Int Conf on Positron Annihilation. The Japan Institute of Metals, p 355

    Google Scholar 

  • Jeavons AP, Charpak G, Stubbs RJ (1975) The high-density multiwire drift chamber. Nucl Instr Meth 124: 491–503

    Article  CAS  Google Scholar 

  • Jeavons A, Schorr B, Kull K, Townsend D, Frey P, Donath A (1981) A large-area stationary positron camera using wire chambers. In: IAEA (ed) Medical radionuclide imaging 1980, vol I. IAEA, Vienna, p 49

    Google Scholar 

  • Johnson TK, Kirch DL, Hasegawa BH, Thompson D, Steele PP (1983) Spatial/temporal/energy dependence of scintillation camera nonlinearities. In: Esser PD (ed) Emission computed tomography: Current trends. Soc Nucl Med, New York, p 71

    Google Scholar 

  • Jordan K (1980) Grundlagen der Strahlenmeßtechnik. In: Hundeshagen H (ed) Nuklearmedizin. Springer, Berlin Heidelberg New York (Handbuch der medizinischen Radiologie, Bd XV/1A, S 131 )

    Google Scholar 

  • Jordan K (1981) Die Verfahren der Emissions-Cornputertomographie und ihre Grenzen. In: Pöppl SJ, Pretschner DP (Hrsg) Systeme und Signalverarbeitung in der Nuklearmedizin. Springer, Berlin Heidelberg New York, S 222

    Google Scholar 

  • Jordan K, Geisler S (1973) Data display in scintigraphy by means of a high-speed electrostatic plotter and special computer averaging techniques. In: IAEA (ed) Medical radioisotope scintigraphy 1972. IAEA, Vienna, p 635

    Google Scholar 

  • Jordan K, Gettner U (1977) Rechnergesteuerte Über-wachung von 60 Szintillationsmeßsonden in einem Tomographiescanner. In: Schmidt HAE (Hrsg) Nuklearmedizin 1975. Schattauer, Stuttgart, S 300

    Google Scholar 

  • Jordan K, Gettner U (1981) Einsatz der Flugzeitmessung bei quantitativen dynamischen Untersuchungen mit Positronen-Strahlern. In: Schmidt HAE, Wolf F, Mahlstedt J (Hrsg) Nuklearmedizin 1980. Schattauer, Stuttgart, S 27

    Google Scholar 

  • Jordan K, Gettner U (1982) Dreidimensionale Ortung von Positronen-Strahlern mit Hilfe der Flugzeitmessung. In: Höfer R, Bergmann H (Hrsg) Radioaktive Isotope in Klinik und Forschung, Bd 15. Egermann, Vienna, S 219

    Google Scholar 

  • Jordan K, Friel HI, Gettner U, Kaempf E, Geisler S, Harsdorf J von, Nentwig C (1974) A new concept of an experimental tomographic scanner. In: WFNMB (ed) Proceedings of the First World Congress of Nuclear Medicine. WFNMB, Tokyo Kyoto, p 1274

    Google Scholar 

  • Jordan K, Gettner U, Judas R (1982) A real time functional positron camera using time-of-flight techniques. In: Bleifeld W, Harder D et al. (eds) Proceedings of the World Congress on Medical Physics and Biomedical Engineering 1982. MPBE, Hamburg, p 21. 07

    Google Scholar 

  • Jordan K, Judas R, Gettner U, Knoop BO, Newiger H (1984 a) SATOF I: Ein Positronen Ringtomograph der Signalverstärkung (SAT) und Flugzeitmesstechnik (TOF) vereint. In: Höfer R, Bergmann H (Hrsg) Radioaktive Isotope in Klinik und Forschung. 16. Band, Egermann, Wien, S 509

    Google Scholar 

  • Jordan K, Gettner U, Judas R, Knoop BO (1984 b) SATOF I: A new design concept for a whole body positron emission tomograph with small rectangular crystals, high packing fraction, and excellent TOF-resolution. In: Schmidt HAE, Vauramo E (Hrsg) Nuklearmedizin 1984. Schattauer, Stuttgart, S 3

    Google Scholar 

  • Judas R, Jordan K, Gettner U (1984) Bariumfluorid - Ein schneller anorganischer Szintillator im Vergleich mit CsF und NE 102 A. In: Schmidt HAE, Adam WE (Hrsg) Nuklearmedizin 1983. Schattauer, Stuttgart, S 24

    Google Scholar 

  • Kairento AL, Brownell GL, Schluederberg J, Elmaleh DR (1983) Regional blood-flow measurement in rabbit soft-tissue tumor with positron imaging using the CO2–15 steady-state and labeled microspheres. J Nucl Med 24: 1135–1142

    PubMed  CAS  Google Scholar 

  • Kanno I, Uemura K, Miura S, Miura Y (1981) HEADTOME: A hybrid emission tomograph for single photon and positron emission imaging of the brain. J Comput Assist Tomogr 5: 216–226

    Article  PubMed  CAS  Google Scholar 

  • Kaplan SN, Kaufman L, Perez-Mendez V, Valentine K (1973) Multiwire proportional chambers for biomedical applications. Nucl Instr Meth 106: 397–406

    Article  CAS  Google Scholar 

  • Kaufman L, Ewins J, Rowan W, Hosier K, Okerlund M, Ortendahl D (1980) Semiconductor gamma-Literatur 303 cameras in nuclear medicine. IEEE Trans Nucl Sci NS-27/3: 1073–1079

    Google Scholar 

  • Kay DB, Keyes JW (1975) First order correction for absorption and resolution compensation in radionuclide fourier tomography. J Nucl Med 16: 540–541

    Google Scholar 

  • Kay DB, Keyes JW, Simon W (1974) Radionuclide tomographie image reconstruction using fourier transform techniques. J Nucl Med 15: 981–986

    PubMed  CAS  Google Scholar 

  • Kearfott KJ (1982a) Absorbed dose estimates for positron emission tomography (PET): CO-15, C110, and COO-15. J Nucl Med 23: 1031–1037

    CAS  Google Scholar 

  • Kearfott KJ (1982b) Radiation absorbed dose estimates for positron emission tomography (PET): K-38, Rb-81, Rb-82, and Cs-130. J Nucl Med 23: 1128–1132

    CAS  Google Scholar 

  • Kearfott KJ, Junck L, Rottenberg DA (1983) C-11 Dimethyloxazolidinedione (DMO): Biodistribution, radiation absorbed dose, and potential for PET measurement of regional brain pH: Concise communication. J Nucl Med 24: 805–811

    PubMed  CAS  Google Scholar 

  • Kearfott KJ, Carroll LR (1984) Evaluation of the performance characteristics of the PC 4600 positron emission tomograph. J Comput Assist Tomogr 8: 502–513

    Article  PubMed  CAS  Google Scholar 

  • Kessler RM, Ellis JR, Eden M (1984) Analysis of emission tomographic scan data: Limitations imposed by resolution and background. J Comput Assist Tomogr 8: 514–522

    Article  PubMed  CAS  Google Scholar 

  • Keyes WI (1979) Current status of single photon emission computerized tomography. IEEE Trans Nucl Sci NS-26/2: 2752–2755

    Google Scholar 

  • Keyes WI, Chesser R, Undrill PE (1977) Transversection emission tomography. In: Hay G (ed) Medical images. Wiley, Chichester, p 51

    Google Scholar 

  • Keyes JW Jr (1982) Perspectives on tomography. J Nucl Med 23: 633–640

    PubMed  Google Scholar 

  • Keyes JW Jr, Orleanda N, Heetderks WJ, Leonard PF, Rogers WL (1977) The humongotron — a scintillation-camera transaxial tomograph. J Nucl Med 18: 381–387

    PubMed  Google Scholar 

  • Keyes JW Jr, Leonard PF, Svetkoff DJ, Brody SL, Rogers WL, Lucchesi BR (1978a) Myocardial imaging using emission computed tomography. Radiology 127: 809–812

    Google Scholar 

  • Keyes JW Jr, Leonard PF, Brody SL, Svetkoff DJ, Rogers WL, Lucchesi BR (1978b) Myocardial infarct quantification in the dog by single photon emission computed tomography. Circulation 58: 227–232

    CAS  Google Scholar 

  • Keyes JW Jr, Rogers WL, Clinthorne NH, Koral KF, Harkness BA (1982) An image quality maintenance program for rotating gamma camera SPECT. In: Höfer R, Bergmann H (Hrsg) Radioaktive Isotope in Klinik and Forschung, Bd 15. Egermann, Wien, S 529

    Google Scholar 

  • Kim KI, Tewarson RP, Bizais Y, Rowe RW (1984) Inversion for the attenuated radon transform with constant attenuation. IEEE Trans Nucl Sci NS-31/1: 538–542

    Google Scholar 

  • King PH, Hubner K, Gibbs W, Holloway E (1981) Noise identification and removal in positron imaging systems. IEEE Trans Nucl Sci NS-28/1: 148–151

    Google Scholar 

  • Kirch DL, Vogel RA, LeFree MT, Stern DM, Sklar J, Hasegawa BH, Steele PP (1980) An anger camera/computer system for myocardial perfusion tomography using a seven pinhole collimator. IEEE Trans Nucl Sci NS-27/1: 412–420

    Google Scholar 

  • Kirsch CM, Doliwa R, Büll U, Roedler D (1983) Detection of severe coronary heart disease with T1–201: Comparison of resting single photon emission tomography with invasive arteriography. J Nucl Med 24: 761–767

    PubMed  CAS  Google Scholar 

  • Kloster G, Laufer P, Wutz W, Stöcklin G (1983) Br-75, 77- and I-123-Analogues of D-Glucose as potential tracers for glucose utilization in heart and brain. Eur J Nucl Med 8: 237–241

    Article  PubMed  CAS  Google Scholar 

  • Klug A, Crowther RA (1972) Three-dimensional image reconstruction from the viewpoint of information theory. Nature 238: 435–440

    Article  Google Scholar 

  • Knoll GF, Williams JJ (1977) Application of a ring pseudorandom aperture for transverse section tomography. IEEE Trans Nucl Sci NS-24/ 1: 581–586

    Article  Google Scholar 

  • Knoop BO (1980) Positronenmessung: Prinzip und Vorteile gegenüber einfacher Gamma-Messung. Der Nuklearmediziner 3: 121–129

    Google Scholar 

  • Knoop BO (1982) Klinische Anwendung digitaler Bildrekonstruktionsverfahren zur Quantifizierung von Profilmessungen im Ganzkürperzühler und zur nichtinvasiven Nierendurchblutungsbestimmung. Diss Universitüt Bremen

    Google Scholar 

  • Knoop BO, Jordan K, Schober O (1984 a) Überlegungen zur realistischen Definition der räumlichen Auflösung. In: Schütz J (Hrsg) Medizinische Physik 1983. Hüthig, Heidelberg, S 597

    Google Scholar 

  • Knoop BO, Jordan K, Judas R, Schober O (1984 b) Spatial resolution in imaging systems: Equivalent width a realistic measure to replace FWHM. J Nucl Med 25/5:22 (abs)

    Google Scholar 

  • Kobayashi M, Morimoto K, Yoshida H, Sugimoto S, Kobayashi S, Chiba M, Ishii M, Akiyama S, Ishibashi H (1983) Bismuth silicate as a scintillating material for electromagnetic shower detectors. Nucl Instr Meth 205: 133–136

    Article  CAS  Google Scholar 

  • Koral KF, Rogers WL (1979) Application of ART to timecoded emission tomography. Phys Med Biol 24: 879–894

    Article  PubMed  CAS  Google Scholar 

  • Koral KF, Rogers WL, Knoll GF (1975) Digital tomographic imaging with time-modulated pseudorandom coded aperture and anger camera. J Nucl Med 16: 402–413

    PubMed  CAS  Google Scholar 

  • Koral KF, Freitas JE, Rogers L, Keyes JW (1979) Thyroid scintigraphy with time coded aperture. J Nucl Med 20: 345–349

    PubMed  CAS  Google Scholar 

  • Koral KF, Clinthorne NH, Rogers WL, Keyes JW (1982) Feasibility of sharpening limited-angle tomography by including an orthogonal set of projections. Nucl Instr Meth 193: 223–227

    Article  CAS  Google Scholar 

  • Kouris K, Garnett ES, Herman GT (1981) Sampling properties of stationary and half-rotation rings in positron emission tomography. J Comput Assist Tomogr 5: 744–754

    Article  PubMed  CAS  Google Scholar 

  • Kouris K, Herman GT, Tuy HK, Nahmias C (1982 a) Coincidence time window, ring sampling and attenuation problems in positron emission tomography. Nucl Instr Meth 193:215–222

    Google Scholar 

  • Kouris K, Spyrou NM, Jackson DF (1982b) Imaging with ionizing radiations. In: Jackson DF, Mayneord WV (eds) Kouris K, Spyrou NM, Jackson DF 1. Surrey University Press

    Google Scholar 

  • Kouris K, Tuy H, Lent A, Herman GT, Lewitt RM (1982c) Reconstruction from sparsely sampled data by ART with interpolated rays. IEEE Trans Med Imag MI-1: 161–167

    Google Scholar 

  • Kuhl DE (1984) Imaging local brain function with emission computed tomography. Radiology 150: 625–631

    PubMed  CAS  Google Scholar 

  • Kuhl DE, Edwards RQ (1962) Body-section radio- isotope scanning. J Nucl Med 3: 199 (Abs)

    Google Scholar 

  • Kuhl DE, Edwards RQ (1963) Image separation radioisotope scanning. Radiology 80: 653–662

    Google Scholar 

  • Kuhl DE, Edwards RQ (1964) Cylindrical and section radioisotope scanning of the liver and brain. Radiology 83: 926–936

    PubMed  CAS  Google Scholar 

  • Kuhl DE, Edwards RQ (1968) Reorganizing data from transverse section scans of the brain using digital processing. Radiology 91: 975–983

    PubMed  CAS  Google Scholar 

  • Kuhl DE, Edwards RQ (1969) Digital processing for modifying and rearranging rectilinear and section scan data under direct observation. In: IAEA (ed) Medical Radioisotope Scintigraphy. IAEA, Vienna, p 703

    Google Scholar 

  • Kuhl DE, Edwards RQ (1970) The Mark III Scanner: A compact device for multiple-view and section scanning of the brain. Radiology 96: 563–570

    PubMed  CAS  Google Scholar 

  • Kuhl DE, Hale J (1965) Transmission scanning for improved orientation of the emission scan. J Nucl Med 6: 333 (Abs)

    Google Scholar 

  • Kuhl DE, Hale J, Eaton WL (1966) Transmission scanning: A useful adjunct to conventional emission scanning for accurately keying isotope deposition to radiographic anatomy. Radiology 87: 278–284

    PubMed  CAS  Google Scholar 

  • Kuhl DE, Edwards RQ, Ricci AR, Reivich M (1973a) Quantitative section scanning. In: IAEA (ed) Medical radioisotope scintigraphy 1972, vol I. IAEA, Vienna, p 347

    Google Scholar 

  • Kuhl DE, Edwards RQ, Ricci AR, Reivich M (1973 b) Quantitative section scanning using orthogonal tangent correction. J Nucl Med 14:196–200

    Google Scholar 

  • Kuhl DE, Reivich M, Alavi A, Nyary I, Staum MM (1975) Local cerebral blood volume determined by three-dimensional reconstruction of radionuclide scan data. Circ Res 36: 610–619

    PubMed  CAS  Google Scholar 

  • Kuhl DE, Edwards RQ, Ricci AR, Yacob RJ, Mich TJ, Alavi A (1976) The Mark IV system for ra-dionuclide computed tomography of the brain. Radiology 121: 405–413

    PubMed  CAS  Google Scholar 

  • Kuhl DE, Hoffman EJ, Phelps ME, Ricci A, Reivich M (1977) Design and application of Mark IV scanning system for radionuclide computed tomography of the brain. In: IAEA (ed) Medical radionuclide imaging, vol I. IAEA, Vienna, p 309

    Google Scholar 

  • Kuhl DE, Phelps ME, Engel J Jr (1980) Emission-computed tomography of Fluoride-18-Fluorodeoxyglucose and Nitrogen-13-Ammonia in stroke and epilepsy. In: IAEA (ed) Medical radionuclide imaging 1980, vol II. IAEA, Vienna, p 333

    Google Scholar 

  • Kuhl DE, Barrio JR, Huang SC, Selin C, Ackerman RF, Lear JL, Wu JL, Lin TH, Phelps ME (1982) Quantifying local cerebral blood flow by N-Isoprophyl-p-(I-123)Iodoamphetamine (IMP) tomography. J Nucl Med 23: 196–203

    PubMed  CAS  Google Scholar 

  • Kwoh YS, Reed IS, Truong TK (1977) Back projection speed improvement for 3-D reconstruction. IEEE Trans Nucl Sci NS-24/5: 1999–2005

    Google Scholar 

  • Lange K, Carson R (1984) EM reconstruction algorithms for emission and transmission tomography. J Comput Assist Tomogr 8: 306–316

    PubMed  CAS  Google Scholar 

  • Larsson SA (1980) Gamma camera emission tomography. Acta Radiol [Suppl] (Stockh) 363

    Google Scholar 

  • Larsson SA, Israelsson A (1982) Considerations on system design. Implementation and computer processing in SPECT. IEEE Trans Nucl Sci NS-29/4: 1331–1342

    Google Scholar 

  • Lassen NA (1982) Imaging cerebral blood flow by Xe-133 inhalation and dynamic single photon tomography. In: Schmidt HAE, Rösler H (Hrsg) Nuklearmedizin 1981. Schattauer, Stuttgart, S XLV

    Google Scholar 

  • Lassen NA, Sveinsdottir E, Kanno I, Stokely EM, Rommer P (1978) A fast moving single photon emission tomograph for regional cerebral blood flow studies in man. J Comput Assist Tomogr 2: 661–662 (Abs)

    Google Scholar 

  • Lassen NA, Henriksen L, Paulson O (1981) Regional cerebral blood flow in stroke by Xe-133 inhalation and emission tomography. Stroke 12: 284–288

    Article  PubMed  CAS  Google Scholar 

  • Lassen NA, Henriksen L, Holm S, Barry I, Paulson OB, Vorstrup S, Rapin J, le Poncin-Lafitte M, Moretti JL, Askienazy S, Raynaud C (1983) Cerebral blood-flow tomography: Xenon-133 compared with Isoprophyl-Amphetamine-lodine123. J Nucl Med 24: 17–21

    PubMed  CAS  Google Scholar 

  • Lauritzen M, Henriksen L, Lassen NA (1981) Regional cerebral blood flow during rest and skilled hand movements by Xenon-133 inhalation and emission computerized tomography. J Cereb Blood Flow Metab 1: 385–389

    Article  PubMed  CAS  Google Scholar 

  • Lauterbur PC (1973) Measurements of local nuclear magnetic resonance relaxation times. Bull Am Phys Soc Ser II/18: 86 (Abs)

    Google Scholar 

  • Laval M, Allemand R, Campagnolo R, Garderet P, Gariod R, Guinet P, Moszynski M, Tournier E, Vacher J (1982) Contribution of the time-offlight information to the positron tomographic imaging. In: Raynaud C (ed) Nuclear medicine and biology III. Pergamon, Paris, p 2315

    Google Scholar 

  • Laval M, Moszynski M, Allemand R, Cormoreche E, Guinet P, Odru R, Vacher J (1983) Barium fluoride — inorganic scintillator for subnanosecond timing Nucl Instr Meth 206: 169–176

    CAS  Google Scholar 

  • Ledley RS, di Chiro G, Luessenhop AJ, Twigg HL (1974) Computerized transaxial X-ray tomography of the human body. Science 186: 207–212

    Article  PubMed  CAS  Google Scholar 

  • Le Free MT, Vogel RA, Kirch DL, Steele PP (1981) Seven-pinhole tomography — a technical description. J Nucl Med 22: 48–54

    Google Scholar 

  • Leichter I, Karellas A, Craven JD, Greenfield MA (1984) The effect of the momentum transfer on the sensitivity of a photon scattering method for the characterization of tissues. Med Phys 11: 31–36

    Article  PubMed  CAS  Google Scholar 

  • Levy G (1974) Comment on fresnel zone plate imaging in nuclear medicine. J Nucl Med 15: 214–215

    PubMed  CAS  Google Scholar 

  • Lewis SE, Stokely EM, Devous MD, Bonte FJ, Buja LM, Parkey RW, Willerson JT (1981) Quantitation of experimental canine infarct size with multipinhole and rotating-slanthole tomography. J Nucl Med 22: 1000–1005

    PubMed  CAS  Google Scholar 

  • Lewis MH, Bonte FJ, Lewis SE, Stokely EM (1982) Work in progress: A comparison of data collection protocols for single photon emission tomography: 180° versus 360°. Radiology 145: 501–504

    PubMed  CAS  Google Scholar 

  • Lim CB, Chang LT, Jaszczak RJ (1980) Performance analysis of three camera configurations for single photon emission computed tomography. IEEE Trans Nucl Sci NS-27/1: 559–568

    Google Scholar 

  • Lim CB, Cheng A, Boyd DP, Hattner RS (1978) A 3-D iterative reconstruction method for stationary planar positron cameras. IEEE Trans Nucl Sci NS-25/1: 196–201

    Google Scholar 

  • Lim CB, Han KS, Hawman EG, Jaszczak RL (1982) Image noise, resolution and lesion detectability in single photon emission CT. IEEE Trans Nucl Sci NS-29/1: 500–505

    Google Scholar 

  • Llacer J (1979) Theory of imaging with a very limited number of projections. IEEE Trans Nucl Sci NS-26/1: 596–602

    Google Scholar 

  • Llacer J (1982) Tomographic image reconstruction by eigenvector decomposition: Its limitations and areas of applicability. IEEE Trans Med Imag MI-1: 34–42

    Google Scholar 

  • Llacer J, Spieler H, Goulding FS (1982) Theoretical analysis of the use of germanium detectors for time-of-flight emission tomography. In: IEEE (ed) 1982 workshop on time-of-flight tomography. IEEE Computer Soc. Los Angeles, p 75

    Google Scholar 

  • Lonn AHR, Rowbotham GD, Holman LA (1983) Monitoring rotating gamma camera performance for emission tomography. In: Mould RF (ed) Quality control of nuclear medicine instrumentation. The Hospital Physicists’ Ass, London, p 92

    Google Scholar 

  • Lottes G (1982) Verfahren zur iterativen Rekonstruktion bei der longitudinalen üSingle-PhotonEmission-Computed-Tomography (SPECT)“ am Beispiel eines Multidetektor-Scanners. Diss Medizinische Hochschule Hannover

    Google Scholar 

  • Lottes G, Jordan K (1978 a) Anwendung von iterativen Korrekturverfahren bei der longitudinalen Tomographie. In: Oeff K, Schmidt HAE (Hrsg) Nuklearmedizin 1976, Bd II. Medico Informationsdienste, Berlin, S 460

    Google Scholar 

  • Lottes G, Jordan K (1978b) Der Einfluß des statistischen Rauschens auf die Bildrekonstruktion bei der longitudinalen Computer-Emissions-Tomographie. In: Schmidt HAE, Woldring M (Hrsg) Nuklearmedizin 1977. Schattauer, Stuttgart, S 53

    Google Scholar 

  • Lottes G, Jordan K (1978e) Demonstration von rekonstruierten Schichtbildern der longitudinalen Emissions-Tomographie. In: Schmidt HAE, Woldring M (Hrsg) Nuklearmedizin 1977. Schattauer, Stuttgart, S 69

    Google Scholar 

  • Lottes G, Jordan K (1979 a) Vergleich von verschiedenen Rekonstruktions-Algorithmen bei der longitudinalen Emissions-Tomographie. In: Schmidt HAE, Ortiz-Berrocal J (Hrsg) Nuklearmedizin 1978. Schattauer, Stuttgart, S 57

    Google Scholar 

  • Lottes G, Jordan K (1979b) Ergebnisse der longitudinalen Emissionstomographie. In: Schmidt HAE, Ortiz-Berrocal J (Hrsg) Nuklearmedizin 1978. Schattauer, Stuttgart, S 81

    Google Scholar 

  • Lottes G, Jordan K (1980) Möglichkeiten zur Absorptionskorrektur bei der longitudinalen Emissionstomographie. In: Schmidt HAE, Riccabona G (Hrsg) Nuklearmedizin 1979. Schattauer, Stuttgart, S 118

    Google Scholar 

  • Lottes G, Jordan K (1981) Demonstration von Randfehlereinflüssen bei der longitudinalen Emissionstomographie anhand von klinischen Aufnahmen. In: Schmidt HAE, Wolf F, Mahlstedt J (Hrsg) Nuklearmedizin 1980. Schattauer, Stuttgart, S 23

    Google Scholar 

  • Maclntyre WJ, Go RT, Houser TS, Sufka B, Napoli C, Cook SA (1982) Evaluation of 180-DEG and 360 DEG reconstruction of the heart by trans-axial tomography with thallium-201. In: Esser PD (ed) Digital imaging. Soc of nuclear medicine. Inc, New York, p 197

    Google Scholar 

  • Marr RB (1974) On the reconstruction of a function on a circular domain from a sampling of its line integrals. J Math Analysis and Applications 45: 357–374

    Article  Google Scholar 

  • Mathieu L, Budinger TF (1974) Pinhole digital tomography. In: WFNMB (ed) Proceedings of the first world congress of nuclear medicine. WFNMB, Tokyo Kyoto, p 1264

    Google Scholar 

  • Maublant J, Cassagnes J, Le Jeune JJ, Mestas D, Veyre A, Jallut H, Meyniel G (1982) A compari-son between conventional scintigraphy and emission tomography with thallium-201 in the detection of myocardial infarction: Concise communication. J Nucl Med 23: 204–208

    PubMed  CAS  Google Scholar 

  • Mazziotta JC, Phelps ME, Plummer D, Kuhl DE (1981) Quantitation in positron emission computed tomography: 5. Physical-Anatomical Effects. J Comput Assist Tomogr 5: 734–743

    Article  PubMed  CAS  Google Scholar 

  • McAffee JG, Mozley JM (1969) Longitudinal tomographic radioisotopic imaging with a scintillation camera: Theoretical considerations of a new method. J Nucl Med 10: 654–659

    Google Scholar 

  • McCready VR, Flower MA, Meller ST (1980) A clinical and physical evaluation of an emission tomo-graphic system. In: Höfer R, Bergmann H (Hrsg) Radioaktive Isotope in Klinik and Forschung 14. Egermann, Wien, S 251

    Google Scholar 

  • McIntyre JA (1980 a) A three-dimensional position-sensitive gamma ray detection system. Nucl Instr Meth 171:19–27

    Google Scholar 

  • McIntyre JA (1980b) Design features of a positron tomograph with 2.4 mm resolution. IEEE Trans Nucl Sci NS-27/4: 1305–1311

    Google Scholar 

  • McIntyre JA (1980e) Plastic scintillation detectors for high resolution emission computed tomography. J Comp Assist Tomogr 4: 351–360

    Article  CAS  Google Scholar 

  • McIntyre JA (1982) Plastic scintillators for time-offlight tomography. In: IEEE (ed) 1982 workshop on time-of-flight tomography. IEEE Computer Soc, Los Angeles, p 51

    Google Scholar 

  • McKee BTA (1982) Towards high-resolution positron emission tomography for small volumes. In: Coleman PG, Sharma SC, Diana LM (eds) Positron annihilation. North-Holland, Amsterdam, p 955

    Google Scholar 

  • Mersereau RM (1973) Recovering multidimensional signals from their projections. Comp Graph Image Proc 1: 179–195

    Article  Google Scholar 

  • Mersereau RM (1976) Direct fourier transform techniques in 3-D image reconstruction. Comput Biol Med 6: 247–258

    Article  PubMed  CAS  Google Scholar 

  • Metz CE, Beck RN (1974) Quantitative effects of stationary linear image processing and noise and resolution of structure in radionuclide images. J Nucl Med 15: 164–169

    PubMed  CAS  Google Scholar 

  • Meyer GJ, Schober O, Gielow P, Hundeshagen H (1982) Functional imaging of the pancreas by positron emission tomography: Routine production of C-11-L-Methionine, quality control, methodology. In: Raynaud C (ed) Nuclear medicine and biology II. Pergamon, Paris, p 1977

    Google Scholar 

  • Meyer GJ, Schober 0, Hundeshagen H (1983) Konstante Infusion von 0–15-markiertem Wasser and Inhalation von C-11-markiertem Kohlenmonoxid als methodische Grundlage zur regionalen Bestimmung des Lungenwassers mittels Positronen-Emissionstomographie. Nucl Med XXII: 121–127

    Google Scholar 

  • Mintun MA, Raichle ME, Martin WRW, Herscovitch P (1984) Brain oxygen utilization measured with 0–15 radiotracers and positron emission tomography. J Nucl Med 25: 177–187

    PubMed  CAS  Google Scholar 

  • Miraldi F, Chiro G di (1970) Tomographic techniques in radioisotope imaging with a proposal of a new device: The tomoscanner. Radiology 94: 513–520

    PubMed  CAS  Google Scholar 

  • Miraldi F, Chiro G di, Skoff G (1969) Evaluation of current methods of radioisotope tomography and design of a new device: The tomoscanner. J Nucl Med 10: 358 (Abs)

    Google Scholar 

  • Mirell SG, Hecht HS, Hopkins JM, Bland WH (1981) Biplanar cardiac blood-pool tomography. J Nucl Med 22: 913–920

    PubMed  CAS  Google Scholar 

  • Monahan WG, Beattie JW, Laughlin JS (1970) Operation and use of a scintillation camera system with three-dimensional resolution for positron emitters. J Nucl Med 11: 347 (Abs)

    Google Scholar 

  • Monahan WG, Beattie JW, Powell MD, Laughlin JS (1973) Total organ kinetic imaging monitor. In: IAEA (ed) Medical radioisotope scintigraphy 1972, vol I. IAEA, Vienna, p 285

    Google Scholar 

  • Moore SC (1982) Attenuation compensation. In: Ell PJ, Holman BL (eds) Computed emission tomography. Oxford University Press, Oxford, p 339

    Google Scholar 

  • Moore SC, Brunelle JA, Kirsch CM (1982) Quantitative multi-detector emission computerized tomography using iterative attenuation compensation. J Nucl Med 23: 706–714

    PubMed  CAS  Google Scholar 

  • Moore RH, Alpert NM, Strauss HW (1983) A variable angle slant-hole collimator. J Nucl Med 24: 61–65

    PubMed  CAS  Google Scholar 

  • Moszynski M, Gresset C, Vacher J, Odru R (1981) Timing properties of BGO scintillator. Nucl Instr Meth 188: 403–409

    Article  CAS  Google Scholar 

  • Moszynski M, Allemand R, Laval M, Odru R, Vacher J (1983) Recent progress in fast timing with CsF scintillators in application to time-of-flight positron tomography in medicine. Nucl Instr Meth 205: 239–249

    Article  CAS  Google Scholar 

  • Muehllehner G (1970) Rotating collimator tomography. J Nucl Med 11: 347 (Abs)

    Google Scholar 

  • Muehllehner G (1971) A tomographic scintillation camera. Phys Med Biol 16: 87–96

    Article  PubMed  CAS  Google Scholar 

  • Muehllehner G (1973) Performance parameters for a tomographic scintillation camera. In: Freedman GS (ed) Tomographie imaging in nuclear medicine. Soc Nucl Med Inc, New York, p 76

    Google Scholar 

  • Muehllehner G (1975) Positron camera with extended counting rate cabability. J Nucl Med 16: 653–657

    PubMed  CAS  Google Scholar 

  • Muehllehner G (1976) Resolution limit of positron cameras. J Nucl Med 17: 757

    PubMed  CAS  Google Scholar 

  • Muehllehner G, Colsher JG (1980) Use of positron sensitive detectors in positron imaging. IEEE Trans Nucl Sci NS-27/1: 569–571

    Google Scholar 

  • Muehllehner G, Colsher J (1981) Single photon imaging. New instrumentation and techniques. In: IAEA (ed) Medical radionuclide imaging 1980, vol I. IAEA, Vienna, p 173

    Google Scholar 

  • Muehllehner G, Colsher JG (1982) Positron computed tomography: 1. Instrumentation. In: Ell PJ, Holman BL (eds) Computed emission tomography. Oxford Univ Press, Oxford, p 3

    Google Scholar 

  • Muehllehner G, Hashmi Z (1972) Quantification of the depth effect of tomographic and section imaging devices. Phys Med Biol 17: 251–260

    Article  PubMed  CAS  Google Scholar 

  • Muehllehner G, Wetzel RA (1971) Section imaging by computer calculation. J Nucl Med 12: 76–84

    PubMed  CAS  Google Scholar 

  • Muehllehner G, Buchin MP, Dudek JH (1976) Performance parameters of a positron imaging camera. IEEE Trans Nucl Sci NS-23/1: 528–537

    Google Scholar 

  • Muehllehner G, Atkins F, Harper PV (1977) Positron camera with longitudinal and transverse torno-graphic capabilities. In: IAEA (ed) Medical radionuclide imaging, vol I. IAEA, Vienna, p 291

    Google Scholar 

  • Mullani NA, Higgins CS, Hood JT, Currie CM (1978) PETT IV: Design analysis and performance characteristics. IEEE Trans Nucl Sci NS-25/1: 180–183

    Google Scholar 

  • Mullani NA, Ficke DC, Ter-Pogossian MM (1980a) Cesium fluoride: a new detector for positron emission tomography. IEEE Trans Nucl Sci NS-27/1: 572–575

    Google Scholar 

  • Mullani NA, Markham J, Ter-Pogossian MM (1980 b) Feasibility of time-of-flight reconstruction in positron emission tomography. J Nucl Med 21:1095–1097

    Google Scholar 

  • Mullani NA, Gould KL, Gaeta JM (1981) Tomographic imaging of the heart with thallium-201: Seven-pinhole or rotating gamma camera? J Nucl Med 22: 925–926

    PubMed  CAS  Google Scholar 

  • Mullani NA, Wong WH, Hartz RK, Yerian K, Philippe EA, Gould KL (1982) Design of TOFPET: A high resolution time-of-flight positron camera. In: IEEE (ed) 1982 Workshop on time-of-flight tomography. IEEE Computer Soc, Los Angeles, p 31

    Google Scholar 

  • Mullani NA, Wong WH, Hartz R, Yerian K, Philippe EA, Gaeta JM, Gould KL (1983) Preliminary results with TOFPET. IEEE Trans Nucl Sci NS-30: 739–743

    Google Scholar 

  • Murayama H, Nohara N, Tanaka E, Hayashi T (1982) A quad BGO detector and its timing and positioning discrimination for positron computed tomography. Nucl Inst Meth 192: 501–511

    Article  CAS  Google Scholar 

  • Murphy PH, Thompson WL, Moore ML, Burdine JA (1979) Radionuclide computed tomography of the body using routine radiopharmaceuticals. I. System characterization. J Nucl Med 20: 102–107

    PubMed  CAS  Google Scholar 

  • Myers MJ, Buseman Sokole E, Bakker J de (1983) A comparison of rotating slant hole collimator and rotating camera for single photon emission tomography of the heart. Phys Med Biol 28: 581–588

    Article  PubMed  CAS  Google Scholar 

  • Myers WG, Bigler RE, Benua RS, Graham MC, Laughlin JS (1983) PET tomographic imaging of the human heart, pancreas and liver with nitrogen-13 derived from (N-13)-L-Glutamate Eur J Nucl Med 8: 381–384

    CAS  Google Scholar 

  • Nahmias C, Kenyon DB, Garnett ES (1982) Experience with a high efficiency positron emission tomograph. IEEE Trans Nucl Sci NS-29/1: 548–550

    Google Scholar 

  • Nahmias C, Firnau G, Garnett ES (1984) Performance characteristics of the McMaster positron emission tomograph. IEEE Trans Nucl Sci NS-31: 637–639

    Google Scholar 

  • Nalcioglu O, Cho ZH, Lou RY (1979) Limited field of view reconstruction in computerized tomography. IEEE Trans Nucl Sci NS-26/1: 546–551

    Google Scholar 

  • Nassi M, Brody WR, Medoff BP, Macovski A (1982) Iterative reconstruction-reprojection: An algorithm for limited data cardiac-computed tomography. IEEE Trans Biomed Eng BME-29: 333–340

    Google Scholar 

  • Nestor OH, Huang CY (1975) Bismuth germanate: A High-Z gamma-ray and charged particle detector. IEEE Trans Nucl Sci NS-22/1: 68–71

    Google Scholar 

  • Newell RR, Saunders W, Miller ER (1952) Multichannel collimators for gamma-ray scanning with scintillation counters. Nucleonics 10: 36

    Google Scholar 

  • Nichols AB, Cochavi S, Hales CA, Beller GA, Strauss HW (1979) Resolution rates of pulmonary embolism assessed by serial positron imaging with inhaled 0–15-labeled carbon dioxide. J Nucl Med 20: 281–286

    PubMed  CAS  Google Scholar 

  • Nickles RJ, Meyer HO (1978) Design of a three-dimensional positron camera for nuclear medicine. Phys Med Biol 23: 686–695

    Article  PubMed  CAS  Google Scholar 

  • Nohara N, Tanaka E, Tomitani T, Yamamoto M, Murayama H, Suda Y, Endo M, Iinuma T. Tateno Y, Shishido F, Ishimatsu K, Ueda K, Ta-kami K (1980) Positologica: A positron ECT device with a continuously rotating detector ring. IEEE Trans Nucl Sci NS-27/3: 1128–1132

    Google Scholar 

  • Ogawa K, Nakajima M, Yuta S (1984) A reconstruction algorithm for truncated projections. IEEE Trans Med Imag MI-3/1: 34–40

    Google Scholar 

  • O’Leary DH, Hill TC, Lee RGL, Clouse ME, Holman BL (1983) The use of I-123-Iodoamphetamine and single-photon emission computed tomography to assess local cerebral blood flow. AJNR 4: 547–549

    PubMed  Google Scholar 

  • Oppenheim BE (1974) More accurate algorithms for iterative 3-dimensional reconstruction. IEEE Trans Nucl Sci NS-21/3: 72–77

    Google Scholar 

  • Oppenheim BE (1975) Three-dimensional reconstruction from incomplete projections. In: Raynaud C, Todd-Pokropek A (eds) Information processing in scintigraphy. Proceedings of the IVth international Conference, Orsay 1975, p 288–324

    Google Scholar 

  • Oppenheim BE (1980) Algebraic reconstruction technique (ART) for transaxial emission computed tomography. In: Soc Nucl Med (ed) Single photon emission computed tomography. Proc 10th Symp Soc Nucl Med Computer Council, Soc Nucl Med Inc, NY, p 31–44

    Google Scholar 

  • Oppenheim BE (1984) Scatter correction for SPECT. J Nucl Med 25: 928–929

    Google Scholar 

  • Ore A, Powell JL (1949) Three-photon annihilation of an electron-positron pair. Phys Rev 75: 1696–1699

    Article  CAS  Google Scholar 

  • Osamu I (1983) A new metabolically trapped agent by brain monoamine oxidase: N-methyl labeled (C-14) N-methylphenylethylamine (C-14MPEA). Eur J Nucl Med 8: 385–388

    Article  PubMed  CAS  Google Scholar 

  • Ott RJ, Bateman JE, Flesher AC, Flower MA, Leach MO, Webb S, Khan O, McCready VR (1983a) Preliminary clinical images from a prototype positron camera. Br J Radiol 56: 773–776

    Article  CAS  Google Scholar 

  • Ott RJ, Flower MA, Khan O, Kalirei T, Webb S, Leach MO, McCready VR (1983b) A comparison between 180° and 360° data reconstruction in single photon emission computed tomography of the liver and spleen. Br J Radiol 56: 931–937

    Article  CAS  Google Scholar 

  • Pang SC, Genna S (1979) The effect of compton scattered photons on emission computerized trans-axial tomography. IEEE Trans Nucl Sci NS-26/ 2: 2772–2774

    Article  Google Scholar 

  • Patton J, Brill AB, Erickson J, Cook WE, Jonston RE (1969) A new approach to mapping three-dimensional radionuclide destributions. J Nucl Med Med 10: 363 (Abs)

    Google Scholar 

  • Patton JA, Brill AB, King PH (1973) Transverse section brain scanning with a multicrystal cylindrical imaging device. In: Freedman GS (ed) Tomographic imaging in nuclear medicine. Soc Nucl Med Inc, New York, p 28

    Google Scholar 

  • Patton JA, Price RR, Brill AB, Pehl R (1977) A mosaic intrinsic germanium radioisotope scanning device with longitudinal section scanning capability. In: IAEA (ed) Medical radionuclide imaging, vol I. IAEA, Vienna, p 159

    Google Scholar 

  • Patton JA, Price RR, Rollo FD, Brill AB, Pehl RH (1978) Clinical and experimental results with a 9 element high purity germanium array. IEEE Trans Nucl Sci NS-25/1: 653–656

    Google Scholar 

  • Patton JA, Price RR, Pickens DR, Brill AB (1980) Techniques for X-Ray fluorescence tomography. IEEE Trans Nucl Sci NS-27: 421–424

    Google Scholar 

  • Pelc NJ, Chesler DA (1979) Utilization of cross-plane rays for three-dimensional reconstruction by filtered back-projection. J Comput Assist Tomogr 3: 385–395

    Article  PubMed  CAS  Google Scholar 

  • Peres A (1979) Tomographic reconstruction from limited angular data. J Comput Assist Tomogr 3: 800–803

    PubMed  CAS  Google Scholar 

  • Perez-Mendez V, Schwartz G, Nelson WR, Bellazini R, Del Guerra A, Massai MM, Spandre G (1983) Further improvements in the design of a positron camera with dense drift space MWPCs. Nucl Instr Meth 217: 89–91

    Article  CAS  Google Scholar 

  • Phelps ME (1977 a) What is the purpose of emission computed tomography in nuclear medicine? J Nucl Med 18:399–402

    Google Scholar 

  • Phelps ME (1977 b) Emission computed tomography. Semin Nucl Med 7:337–365

    Google Scholar 

  • Phelps ME (1981) Positron computed tomography studies of cerebral glucose metabolism in man: Theory and application in nuclear medicine. Se-min Nucl Med XI: 32–49

    Google Scholar 

  • Phelps ME, Hoffman EJ, Mullani NA, Ter-Pogossian MM (1975a) Application of annihilation coincidence detection to transaxial reconstruction tomography. J Nucl Med 16: 210–224

    CAS  Google Scholar 

  • Phelps ME, Hoffman EJ, Huang SC, Ter-Pogossian MM (1975b) Effect of positron range on spatial resolution. J Nucl Med 16: 649–652

    CAS  Google Scholar 

  • Phelps ME, Hoffman EJ, Coleman RE, Welch MJ, Raichle ME, Weiss ES, Sobel BE, Ter-Pogossian MM (1976) Tomographic Images of blood pool and perfusion in brain and heart. J Nucl Med 17: 603–612

    PubMed  CAS  Google Scholar 

  • Phelps ME, Hoffman EJ, Kuhl DE (1977) Physiologic tomography (PT). A new approach to in-vivo measure of metabolism and physiological function. In: IAEA (ed) Medical radionuclide imaging, vol I. IAEA, Vienna, p 233

    Google Scholar 

  • Phelps ME, Hoffman EJ, Huang SC, Kuhl DE (1978) ECAT: A new computerized tomographic imaging system for positron emitting radiopharmaceuticals. J Nucl Med 19: 635–647

    PubMed  CAS  Google Scholar 

  • Phelps ME, Huang SC, Hoffman EJ, Kuhl DE (1979) Validation of tomographic measurement of cerebral blood volume with C-11-labeled carboxyhemoglobin. J Nucl Med 20: 328–334

    PubMed  CAS  Google Scholar 

  • Phelps ME, Hoffman EJ, Huang SC, Kuhl DE (1981) Positron computed tomography. In: IAEA (ed) Medical radionuclide imaging 1980, vol 1. IAEA, Vienna, p 199

    Google Scholar 

  • Phelps ME, Huang SC, Hoffman EJ, Plummer D, Carson R (1982) An analysis of signal amplification using small detectors in positron emission tomography. J Comput Assist Tomogr 6: 551–565

    Article  PubMed  CAS  Google Scholar 

  • Pickens DR, Price RR, Patton JA, Erickson JJ, Rollo FD, Brill AB (1980) Focal-plane tomography image reconstruction. IEEE Trans Nucl Sci NS-27/1: 489–492

    Google Scholar 

  • Pickens DR, Price RR, Ericson JJ, Patton JA, Par-tain CL, Rolle FD (1981) Longitudinal and transverse digital image reconstruction with a tomographic scanner. In: IAEA (ed) Medical radionuclide imaging 1980, vol I. IAEA, Vienna, p 325

    Google Scholar 

  • Politte DG, Snyder DL (1982) A simulation study of design choices in the implementation of timeof-flight reconstruction algorithms. In: IEEE (ed) 1982 workshop on time-of-flight tomography. IEEE Computer Soc, Los Angeles, pp 131–136

    Google Scholar 

  • Politte DG, Snyder DL (1984) Results of a comparative study of a reconstruction procedure for producing improved estimates of radioactivity distributions in time-of-flight emission tomography. IEEE Trans Nucl Sci NS-31/1: 614–619

    Google Scholar 

  • Price LR (1975) CCA: A high resolution, high sensitivity, three-dimensional imaging system for nuclear medicine. Nucl Instr Meth 131: 353–368

    Article  Google Scholar 

  • Price LR (1978) CCA-II: An improved system for emission computed tomography (ECT). Nucl Instr Meth 152: 213–220

    Article  Google Scholar 

  • Price LR (1979) An improved coded-aperture system for emission computed tomography (ECT). IEEE Trans Nucl Sci NS-26/2: 2794–2796

    Google Scholar 

  • Ra JB, Cho ZH (1981) Generalized true three-dimensional reconstruction algorithm. Proc IEEE 69: 668–670

    Article  Google Scholar 

  • Ra JB, Lim CB, Cho ZH, Hilal SK, Correll J (1982) A true three-dimensional reconstruction algorithm for the spherical positron emission tomo-graph. Phys Med Bio! 27: 37–50

    Article  Google Scholar 

  • Radon J (1917) Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Ber Verh Sächs Akad Wiss Leipzig, Math Phys KI 69: 262–277

    Google Scholar 

  • Raichle ME, Martin WRW, Herscovitch P, Mintun MA, Markham J (1983) Brain blood flow measured with intravenous H2O -15. II. Implementation and validation. J Nucl Med 24: 790–798

    PubMed  CAS  Google Scholar 

  • Ramachandran GN, Lakshminarayanan AV (1971) Three-dimensional reconstruction from radiographs and electron micrographs: Application of convolution instead of fourier transforms. Proc Natl Acad Sci USA 68 /9: 2236–2240

    Article  PubMed  CAS  Google Scholar 

  • Rangayyan RM, Gordon R (1982) Streak preventive image reconstruction with ART and adaptive filtering. IEEE Trans Med Imag MI-1/3: 173–177

    Google Scholar 

  • Rankowitz S, Robertson JS, Hihinbotham WA, Rosenblum MJ (1962) Positron scanner for locating brain tumors. IRE Int Con Rec 10 /9: 49–56

    Google Scholar 

  • Ratib O, Henze E, Hoffman E, Phelps ME, Schelbert HR (1982) Performance of the rotating slant-hole collimator for the detection of myocardial perfusion abnormalities. J Nucl Med 23: 31–41

    Google Scholar 

  • Renaud L, Joy MLG, Gilday GL (1979) Fourier multiaperture emission tomography (FMET). J Nucl Med 20: 986–991

    PubMed  CAS  Google Scholar 

  • Rhodes CG, Wollmer P, Fazio F, Jones T (1981) Quantitative measurement of extravascular lung density using positron emission and transmission tomography. J Comput Assist Tomogr 5: 783–791

    Article  PubMed  CAS  Google Scholar 

  • Ricci AR, Hoffman EJ, Phelps ME, Huang SC, Plummer D, Carson R (1982) Investigation of a technique for providing a pseudo-continuous detector ring for positron tomography. IEEE Trans Nucl Sci NS-29/1: 452–456

    Google Scholar 

  • Rizi HR, Kline RC, Thrall JH, Besozzi MC, Keyes JW Jr, Rogers WL, Clare J, Pitt B (1981) Thallium-201 myocardial scintigraphy: A critical comparison of seven-pinhole tomography and conventional planar imaging. J Nucl Med 22: 493–499

    PubMed  CAS  Google Scholar 

  • Robertson JS, Marr RB, Rosenblum M, Radeka V, Yamamoto YL (1973) 32-Crystal positron transverse section detector. In: Freedman GS (ed) Tomographic imaging in nuclear medicine. Soc Nucl Med Inc, New York, p 142

    Google Scholar 

  • Rogers WL, Han KS, Jones LW, Beierwaltes WH (1972) Application of a fresnel zone plate to gamma-ray-imaging. J Nucl Med 13: 612–615

    PubMed  CAS  Google Scholar 

  • Rogers WL, Clinthorne NH, Harkness BA, Koral KF, Keyes JW Jr (1982 a) Field-flood requirements for emission computed tomography with an anger camera. J Nucl Med 23:162–168

    CAS  Google Scholar 

  • Rogers WL, Koral KF, Mayans R, Leonard PF, Thrall JH, Brady TJ, Keyes JW Jr (1980) Coded-aperture imaging of the heart. J Nucl Med 21: 371–378

    PubMed  CAS  Google Scholar 

  • Rogers WL, Clinthorne NH, Stamos J, Koral KF, Mayans R, Keyes JW Jr, Williams JJ, Snapp WP, Knoll GF (1982b) SPRINT: A stationary detector single photon ring tomograph for brain imaging. IEEE Trans Med Imag MI-1: 63–68

    Google Scholar 

  • Rollo FD, Patton JA (1980) Teaching editorial: Perspectives on seven pinhole tomography. J Nucl Med 21: 888–890

    PubMed  CAS  Google Scholar 

  • Rosenfeld D, Macovski A (1977) Time modulated apertures for tomography in nuclear medicine. IEEE Trans Nucl Sci NS-24/1: 570–576

    Google Scholar 

  • Rosier DJ de, Klug A (1968) Reconstruction of three-dimensional structures from electron micrographs. Nature 217: 130–134

    Article  Google Scholar 

  • Rowland SW (1979) Computer implementation of image reconstruction formulas. In: Herman GT (ed) Image reconstruction from projections. Springer, Berlin Heidelberg New York, p 9

    Google Scholar 

  • Rusinek H, Youdin M, Reich T (1978) Reconstruction of isotope distribution in the brain: Error analysis for instrument design. Ann Biomed Eng 6: 399–412

    Article  PubMed  CAS  Google Scholar 

  • Rusinek H, Reich T, Youdin M, Clagnaz M, Kolwicz R (1980) A ultrapure germanium detector array for quantitating three-dimensional distribution of a radionuclide: A study of phantoms. J Nucl Med 21: 777–782

    PubMed  CAS  Google Scholar 

  • Sank VJ, Brooks RA, Friauf WS, Leighton SB, Cascio HE, Di Chiro G (1983) Performance evaluation and calibration of the neuro-PET scanner. IEEE Trans Nucl Sci NS-30: 636–639

    Google Scholar 

  • Schelbert HR, Phelps ME, Hoffman EJ, Huang SC (1980 a) Regional myocardial perfusion assessed by nitrogen-13 labeled ammonia and positron emission computerized axial tomography. In: Horst W, Wagner HN Jr, Buchanan J (eds) Frontiers in nuclear medicine. Springer, Berlin Heidelberg New York, p 20

    Google Scholar 

  • Schelbert HR, Henze E, Phelps ME (1980b) Emission tomography of the heart. Semin Nucl Med X: 355–373

    Article  Google Scholar 

  • Schmidlin P (1972) Iterative separation of sections in tomographie scintigrams. Nuklearmedizin XI: 1–16

    Google Scholar 

  • Schmidlin P (1973) Zerlegung der Aufnahmen der symmetrischen Positronenkamera in einzelne Bildebenen mit Hilfe eines mathematischen Verfahrens. In: Pabst HW (Hrsg) Nuklearmedizin 1971. Schattauer, Stuttgart, S 295

    Google Scholar 

  • Schmitz-Feuerhake I (1970) Studies on three-dimensional scintigraphy with y-y-coincidences. Phys Med Biol 15: 649–656

    Article  PubMed  CAS  Google Scholar 

  • Schober O, Meyer GJ, Bossaller C, Lobenhoffer P, Knoop B, Müller S, Creutzig H, Sturm J, Lichtlen P, Hundeshagen H (1983) Quantitative Messung des regionalen extravaskulären Lungenwassers bei Hunden mit der Positronen-Emissionstomographie. Fortschr Röntgenstr 139: 117–126

    Article  CAS  Google Scholar 

  • Schön HR, Schelbert HR, Phelps ME (1983) Positronen-Computertomographie: Eine neue Methode zur quantitativen Bestimmung von Stoffwechsel, Durchblutung und Funktion des Herzens. I. Technische und experimentelle Grundlagen. Nucl Med XXII: 171–180

    Google Scholar 

  • Shepp LA, Logan BF (1974) The fourier reconstruction of a head section. IEEE Trans Nucl Sci NS-21/3: 21–43

    Google Scholar 

  • Shepp LA, Vardi Y (1982) Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imag MI-1/2: 113–122

    Article  CAS  Google Scholar 

  • Shosa D, Kaufman L (1981) Methods for evaluation of diagnostic imaging instrumentation. Phys Med Biol 26: 101–112

    Article  PubMed  CAS  Google Scholar 

  • Singh M (1983) An electronically collimated gamma camera for single photon emission computed tomography. Part I: Theoretical considerations and design criteria. Med Phys 10: 421–427

    Article  PubMed  CAS  Google Scholar 

  • Singh M, Doria D (1981) Computer simulation of image rekonstruction with a new electronically collimated gamma tomography systems. SPIE vol 273. Applicat Optic Instr Med IX: 192–200

    Google Scholar 

  • Singh M, Doria D (1983) An electronically collimated gamma camera for single photon emission computed tomography. Part II. Image reconstruction and preliminary experimental measurements. Med Phys 10: 428–435

    Article  PubMed  CAS  Google Scholar 

  • Smalling RW (1983) The spectrum of Thallium-201 imaging in coronary artery disease. Teaching editorial. J Nucl Med 24: 854–858

    PubMed  CAS  Google Scholar 

  • Smith DB, Cumpstey DE, Evans NTS, Coleman JD, Ettinger KV, Mallard JR (1982) A scanner for single photon emission tomography. In: Raynaud C (ed) Nuclear medicine and biology II. Perga-mon, Paris, p 1221

    Google Scholar 

  • Snyder DL, Cox JR Jr (1977) An overview of reconstructive tomography and limitations imposed by a finite number of projections. In: Ter-Pogossian MM et al (eds) Reconstruction tomography in diagnostic radiology and nuclear medicine. Univ Park Press, Baltimore, p 3

    Google Scholar 

  • Snyder DL (1982) Some noise comparisons of data-collection arrays for emission tomography-systems having time-of-flight measurements. IEEE Trans Nucl Sci NS-29/1: 1029–1033

    Google Scholar 

  • Snyder DL (1984) Utilizing side information in emission tomography. IEEE Trans Nucl Sci NS-31/ 1: 533–537

    Article  Google Scholar 

  • Snyder DL, Politte DG (1983) Image reconstruction from list-mode data in an emission tomography system having time-of-flight measurements. IEEE Trans Nucl Sci NS-30/3: 1843–1849

    Google Scholar 

  • Snyder DL, Thomas LJ, Ter-Pogossian MM (1981) A mathematical model for positron-emission tomography systems having time-of-flight measurements. IEEE Trans Nucl Sci NS-28/3: 3575–3583

    Google Scholar 

  • Sorensen JA (1974) Methods for quantitative measurements of radioactivity in vivo by whole body counting. In: Hine GJ, Sorensen JA (eds) Instrumentation in nuclear medicine, vol 2. Academic Press, New York, pp 311–348

    Google Scholar 

  • Soussaline F, Le Coq G (1983) A regularizing method for quantitative SPECT reconstruction. IEEE Trans Med Imag MI-2/1: 24–30

    Google Scholar 

  • Soussaline F, Todd-Pokropek AE, Comar D, Raynaud C, Kellershohn C (1981 a) Potential and limits of quantitative studies in emission tomography. In: IAEA (ed) Medical radionuclide imaging 1980, vol I. IAEA, Vienna, p 231

    Google Scholar 

  • Soussaline FP, Todd-Pokropek AE, Zurowski S, Huffer E, Raynaud CE, Kellershohn CL (1981 b) A rotating conventional gamma camera single-photon tomographic system: Physical characterization. J Comput Assist Tomogr 5:551–556

    Article  Google Scholar 

  • Soussaline FP, Cao A, Le Coq G, Raynaud C, Kellershohn C (1982) An analytical approach to single photon emission computed tomography with the attenuation effect. Eur J Nucl Med 7: 487–493

    Article  PubMed  CAS  Google Scholar 

  • Stark H, Woods JW, Paul J, Hingorani R (1981) An investigation of computerized tomography by direct fourier inversion and optimum interpolation. IEEE Trans Biomed Eng BME-28/7: 496–505

    Google Scholar 

  • Stoddart HF, Stoddart HA (1979) A new development in single gamma transaxial tomography — union carbide focused collimator scanner. IEEE Trans Nucl Sci NS-26/2: 2710–2712

    Google Scholar 

  • Stokely EM (1982) A contigous-slice design for single-photon emission tomography (SPECT). J Nucl Med 23: 355–356

    PubMed  CAS  Google Scholar 

  • Stokely EM, Sveinsdottir E, Lassen NA, Rommer P (1980) A single photon dynamic computer assisted tomograph (DCAT) for imaging brain function in multiple cross sections. J Comput Assist Tomogr 4: 230–240

    Article  PubMed  CAS  Google Scholar 

  • Strauss L, Bostel F, Clorius JH, Raptou E, Wellman H, Georgi P (1982) Single-photon emission computed tomography (SPECT) for assessment of hepatic lesions. J Nucl Med 23: 1059–1065

    PubMed  CAS  Google Scholar 

  • Syrota A, Comar D, Cerf M, Plummer D, Maziere M, Kellershohn C (1979) C-11 methionine pancreatic scanning with positron emission computed tomography. J Nucl Med 20: 778–781

    PubMed  CAS  Google Scholar 

  • Takami K, Ueda K, Okajima K, Tanaka E, Nohara N, Tomitani T, Yamamoto M, Murayama H, Shishido F, Ishimatsu K, Ohgushi A, Inoue S, Takakusa Y, Hayashi T, Nakase S (1983) Performance study of whole-body, multislice positron computed tomograph — positologica-II. IEEE Trans Nucl Sci NS-30: 734–738

    Google Scholar 

  • Tam KC (1983) Multispectral limited-angle image reconstruction. IEEE Trans Nucl Sci NS-30/1: 697–700

    Article  Google Scholar 

  • Tam KC, Perez-Mendez V (1981) Limits to image reconstruction from restricted angular input. IEEE Trans Nucl Sci NS-28/1: 179–183

    Article  Google Scholar 

  • Tam KC, Perez-Mendez V (1983) Improving gated cardiac scanning using limited-angle reconstruction technique. IEEE Trans Nucl Sci NS-30/ 1: 681–685

    Article  Google Scholar 

  • Tam KC, Chu G, Perez-Mendez V, Lim CB (1978) Three dimensional reconstruction in planar positron cameras using fourier deconvolution of generalized tomograms. IEEE Trans Nucl Sci NS-25/ 13: 152–159

    Article  Google Scholar 

  • Tam KC, Perez-Mendez V, Macdonald B (1979) 3-D object reconstruction in emission and transmission tomography with limited angular input. IEEE Trans Nucl Sci NS-26/2:2797–2805

    Google Scholar 

  • Tam KC, Perez-Mendez V, Macdonald B (1980) Limited angle 3-D reconstruction from continuous and pinhole projections. IEEE Trans Nucl Sci NS-27/1: 445–458

    Google Scholar 

  • Tamaki N, Mukai T, Ishii Y, Yonekura Y, Kambara H, Kawai C, Torizuka K (1981) Clinical evaluation of thallium-201 emission myocardial tomography using a rotating gamma camera: Comparison with seven-pinhole tomography. J Nucl Med 22: 849–855

    PubMed  CAS  Google Scholar 

  • Tamaki N, Mukai T, Ishii Y, Fujita T, Yamamoto K, Minato K, Yonekura Y, Tamaki S, Kambara H, Kawai C, Torizuka K (1982) Comparative study of thallium emission myocardial tomography with 180° and 360° data collection. J Nucl Med 23: 661–666

    PubMed  CAS  Google Scholar 

  • Tanaka E (1982) Line-writing data acquisition and signal-to-noise ratio in time-of-flight positron emission tomography. In: IEEE (ed) 1982 workshop on time-of-flight tomography. IEEE Cornputer Soc, Los Angeles, pp 101–108

    Google Scholar 

  • Tanaka E (1983) Quantitative image reconstruction with weighted backprojection for single photon emission computed tomography. J Comput Assist Tomogr 7: 692–700

    Article  PubMed  CAS  Google Scholar 

  • Tanaka E, Iinuma TA (1974) Image formation in coded aperture imaging and its application to a rotating slit aperture. In: WFNBM (ed) Proceedings of the First World Congress of Nuclear Medicine. WFNMB, Tokyo Kyoto, p 9

    Google Scholar 

  • Tanaka E, linuma TA (1976) Image processing for coded aperture imaging and an attempt at rotating slit imaging In: Raynaud C, Todd-Pokropek A (eds) Information processing in scintigraphy. CEN, Saclay, p 43

    Google Scholar 

  • Tanaka E, Nohara N, Yamamoto M, Tomitani T, Murayama H, Ishimatsu K, Takami K (1979) Positologica — The search for suitable detector arrangements for a positron ECT with continuous rotation. IEEE Trans Nucl Sci NS-26/2: 2728–2731

    Google Scholar 

  • Tanaka M, Hirose Y, Koga K, Hattori H (1981) Engineering aspects of a hybrid emission computed tomograph. IEEE Trans Nucl Sci NS-28/ 1: 137–141

    Article  Google Scholar 

  • Tanaka E, Nohara N, Tomitani T, Endo M (1982) Analytical study of the performance of a multiplier positron computed tomography scanner. J Comput Assist Tomogr 6: 350–364

    Article  PubMed  CAS  Google Scholar 

  • Tanaka E, Toyama H, Murayama H (1984) Convolutional image reconstruction for quantitative single photon emission computed tomography. Phys Med Biol29: 1489–1500

    Article  PubMed  CAS  Google Scholar 

  • Ter-Pogossian MM (1977) Basic principles of computed axial tomography. Semin Nucl Med VII: 109–127

    Article  Google Scholar 

  • Ter-Pogossian MM (1981) Special characteristics and potential for dynamic function studies with PET. Semin Nucl Med XI: 13–23

    Article  Google Scholar 

  • Ter-Pogossian MM, Phelps ME, Hoffman EJ, Mullani NA (1975) A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology 114: 89–98

    PubMed  CAS  Google Scholar 

  • Ter-Pogossian MM, Phelps ME, Hoffman EJ, Coleman RE (1977) The performance of PETT III. In: Ter-Pogossian MM et al. (eds) Reconstruction tomography in diagnostic radiology and nuclear medicine. Park, Baltimore, p 359

    Google Scholar 

  • Ter-Pogossian MM, Mullani NA, Wood J, Higgins CS, Currie CM (1978 a) A multislice positron emission computed tomograph (PETT IV) yielding transverse and longitudinal images. Radiology 128:477–484

    CAS  Google Scholar 

  • Ter-Pogossian MM, Mullani NA, Hood JT, Higgins CS, Ficke DC (1978 b) Design considerations for a positron emission transverse tomograph (PETT V) for imaging of the brain. J Comput Assist Tomogr 2: 539–544

    Article  CAS  Google Scholar 

  • Ter-Pogossian NM, Mullani NA, Ficke DC, Markham J, Snyder DL (1981) Photon time-of-flightassisted positron emission tomography. J Corn-put Assist Tomogr 5: 227–239

    Article  CAS  Google Scholar 

  • Ter-Pogossian MM, Ficke DC, Yamamoto M, Hood Sr JT (1982 a) Super PETT I: A positron emission tomograph utilizing photon time-of-flight information. IEEE Trans Med Imag MI-1/3:179–187

    Google Scholar 

  • Ter-Pogossian MM, Ficke DC, Hood Sr JT, Yamamoto M, Mullani NA (1982b) PETT VI: A positron emission tomograph utilizing cesium fluoride scintillation detectors. J Comput Assist Tomogr 6: 125–133

    Article  CAS  Google Scholar 

  • Ter-Pogossian MM, Bergmann SR, Sobel BE (1982c) Influence of cardiac and respiratory motion on tomographic reconstructions of the heart: Implications for quantitative nuclear cardiology. J Comput Assist Tomogr 6: 1148–1155

    Article  CAS  Google Scholar 

  • Thompson CJ, Yamamoto YL, Meyer E (1979) Posi-tome II: A high efficiency positron imaging device for dynamic brain studies. IEEE Trans Nucl Sci NS-26/1: 583–589

    Google Scholar 

  • Todd-Pokropek A (1980) Image processing in nuclear medicine. IEEE Trans Nucl Sci NS-27/ 3: 1080–1094

    Article  Google Scholar 

  • Todd-Pokropek A (1982) Single photon emission computerized tomography (SPECT): Quality control and assurance. In: Höfer R, Bergmann H (Hrsg) Radioaktive Isotope in Klinik and Forschung, 15. Bd. Egermann, Wien, S 539

    Google Scholar 

  • Todd-Pokropek A (1983 a) Non-circular orbits for the reduction of uniformity artefacts in SPECT. Phys Med Biol 28:309–313

    Google Scholar 

  • Todd-Pokropek A ( 1983 b) The Mathematics and physics of emission computerized tomography (ECT). In: Esser PD (ed) Emission computed tomography: Current Trends. Soc Nucl Med, New York, p 3

    Google Scholar 

  • Todd-Pokropek AE, Jarritt PH (1982) The noise characteristics of SPECT systems. In: Ell PJ, Holman BL (eds) Computed emission tomography. Oxford Univers Press, Oxford, p 361

    Google Scholar 

  • Todd-Pokropek A, Soussaline F (1982) Quality control of SPECT systems: Removal of artefacts. In: Raynaud C (ed) Nuclear medicine and biology I. Pergamin, Paris, p 1018

    Google Scholar 

  • Todd-Pokropek A, Clarke G, Marsh R, Gillardi MC, Fazio F (1984) SPECT quantitation: The need for scatter and attenuation correction. In: Höfer R, Bergmann H (eds) Radioaktive Isotope in Klinik and Forschung, Bd 16/2. Egermann, Wien, pp 613–625

    Google Scholar 

  • Tomitani T (1981) Image reconstruction and noise evaluation in photon time-of-flight assisted positron emission tomography. IEEE Trans Nucl Sci NS-28/6: 4582–4589

    Google Scholar 

  • Tomitani T (1982) Simulation study of reconstruction with practical writing functions and noise evaluation in time-of-flight assisted positron cornputed tomography. In: IEEE (ed) 1982 workshop on time-of-flight tomography. IEEE Computer Soc, Los Angeles, p 117

    Google Scholar 

  • Townsend DW, Zanella P (1980) Computational aspects of positron imaging using multiwire proportional chambers in nuclear medicine. Nucl Instr Meth 176: 397–401

    Article  CAS  Google Scholar 

  • Townsend D, Piney C, Jeavons A (1978) Object reconstruction from focused positron tomograms. Phys Med Biol 23: 235–244

    Article  PubMed  CAS  Google Scholar 

  • Townsend D, Schorr B, Jeavons A (1980) Three-dimensional image reconstruction for a positron camera with limited angular acceptance. IEEE Trans Nucl Sci NS-27/1: 463–470

    Google Scholar 

  • Tretiak OJ, Delaney P (1978) The exponential convolution algorithm for emission computed axial tomography. In: Proc 5th Intern Conf on Information Processing in Med Imaging, Oak Ridge Rep ORNL/BCJIC-2, pp 266–268

    Google Scholar 

  • Tretiak OJ, Metz CE (1980) The exponential radon transform. SIAM J Appl Math 39: 341–354

    Article  Google Scholar 

  • Truong TK, Reed IS, Jonckheere EA, Kwoh YS (1983) A modified reconstruction filter for diverg-ing X-ray beams. IEEE Trans Biomed Eng BME30/7: 423–426

    Google Scholar 

  • Tsui E, Budinger TF (1978) Transverse section imaging of mean clearence time. Phys Med Biol 23: 64–653

    Google Scholar 

  • Tsui BMW, Jaszczak RJ (1984) Interactions of collimator, sampling and filtering on SPECT spatial resolution. IEEE Trans Nucl Sci NS-31/1: 527–532

    Google Scholar 

  • Turner DA, Ramachandran PC, Ali AA, Fordham EW, Ferry TA (1976a) Brain scanning with the anger multiplane tomographic scanner as a primary examination. Radiology 121: 125–129

    CAS  Google Scholar 

  • Turner DA, Fordham EW, Paganow JV, Ali AA, Ramos MV, Ramachandran PC (1976b) Brain scanning with the anger multiplane tomographic scanner as a second examination. Radiology 121: 115–124

    CAS  Google Scholar 

  • Uemura K, Kanno I, Miura Y, Miura S, Tominaga S (1982) Tomographic study of regional cerebral blood flow in ischemic cerebrovascular disease by Kr-81m intraarterial infusion and HEADTOME. J Comput Assist Tomogr 6: 677–682

    Article  PubMed  CAS  Google Scholar 

  • Van Sciver, Hofstadter R (1952) Gamma and alpha produced scintillations in cesium fluoride. Phys Rev 87: 522

    Article  Google Scholar 

  • Vogel RA, Kirch DL, Le Free MT, Steele PP (1978) A new method of multiplanar emission tomography using a seven pinhole collimator and an anger scintillation camera. J Nucl Med 19: 648–654

    PubMed  CAS  Google Scholar 

  • Vogel RA, Kirch DL, Le Free MT, Rainwater JO, Jensen DP, Steele PP (1979) Thallium-201 myocardial perfusion scintigraphy: Results of standard and multi-pinhole tomographic techniques. Am J Cardiol 43: 787–793

    Article  PubMed  CAS  Google Scholar 

  • Vogel RA, Le Free MT, Kirch DL (1980) Rapid and inexpensive cardiac tomography using a widefield anger camera. In: Horst W, Wagner Jr HN, Buchanan J (eds) Frontiers in nuclear medicine. Springer, Berlin Heidelberg New York, p 79

    Chapter  Google Scholar 

  • Vyska K, Höck A, Freundlieb C, Becker V, Schmidt A, Feinendegen LE, Kloster G, Stöcklin G (1981) Stoffwechseluntersuchung am Herzen mit J-123-Fettsäuren und C-11-Methylglukose. Nucl Med XX: 148–155

    Google Scholar 

  • Vyska K, Freundlieb C, Höck A, Becker V, Schmidt A, Feinendegen LE, Kloster G, Stöcklin G, Heiss WD (1982) Analysis of local perfusion rate (LPR) and local glucose transport rate (LGTR) in brain and heart in man by means of C-11-Methyl-Dglucose (CMG) and dynamic positron emission tomography (DPET). In: Höfer R, Bergmann H (Hrsg) Radioaktive Isotope in Klinik und Forschung. Egermann, Wien, S 129

    Google Scholar 

  • Wagner HN Jr (1978) Images of the future. J Nucl Med 19: 599–605

    PubMed  Google Scholar 

  • Wagner HN Jr (1983) Notes and impressions from meetings. Two positron emission tomography meetings. J Comput Assist Tomogr 7: 1128–1131

    Article  Google Scholar 

  • Walters TE, Simon W, Chesler DA, Correia JA (1981) Attenuation correction in gamma emission computed tomography. J Comput Assist Tomogr 5: 89–94

    Article  PubMed  CAS  Google Scholar 

  • Webb S, Flower MA, Ott RJ, Leach MO, Grey LJ (1982) A physical evaluation of three pinhole tomography. In: Raynaud (ed) Nuclear medicine and biology I. Pergamon, Paris, p 469

    Google Scholar 

  • Webb S, Flower MA, Ott RJ, Leach MO (1983) A comparison of attenuation correction methods for quantitative single photon emission computed tomography. Phys Med Biol 28: 1045–1056

    Article  PubMed  CAS  Google Scholar 

  • Weiss GH, Talbert AJ, Brooks RA (1982) The use of phantom views to reduce CT-streaks, due to insufficient angular sampling. Phys Med Biol 27: 1151–1162

    Article  PubMed  CAS  Google Scholar 

  • Whitehead FR (1977) Quantitative analysis of minimum detectable lesion-to-background uptake ratios for nuclear medicine imaging systems. In: IAEA (ed) Medical radionuclide imaging, vol 1. Vienna, pp 409–434

    Google Scholar 

  • Williams CW, Crabtree MC, Burgiss SG (1979) Design and performance characteristics of a positron emission computed axial tomograph: ECAT II. IEEE Trans Nucl Sci NS-26/1: 619–627

    Google Scholar 

  • Williams CW, Crabtree MC, Burke MR, Keyser RM, Burgiss SG, Hoffman EJ, Phelps ME (1981) Design of the neuro-ECAT: A high resolution, high efficiency positron tomograph for imaging the adult head or infant torso. IEEE Trans Nucl Sci NS-28/2: 1736–1740

    Google Scholar 

  • Williams DL, Ritchie JL, Harp GD, Caldwell JH, Hamilton GW (1980) In-vivo simulation of Thallium-201 myocardial scintigraphy by seven-pinhole emission tomography. J Nucl Med 21: 821–828

    PubMed  CAS  Google Scholar 

  • Williams DL, Ritchie JL, Harp GD, Caldwell JH, Hamilton GW (1980) In vivo simulation of Thallium-201 myocardial scintigraphy by seven-pinhole emission tomography. J Nucl Med 21: 821–828

    PubMed  CAS  Google Scholar 

  • Williams JJ, Knoll GF (1979) Initial performance of SPRINT: A single photon system for emission tomography. IEEE Trans Nucl Sci NS-26/ 2: 2732–2735

    Article  Google Scholar 

  • Williams JJ, Snapp WP, Knoll GF (1979) Introducing SPRINT: A single photon ring system for emission tomography. IEEE Trans Nucl Sci NS-26/1: 628–633

    Google Scholar 

  • Wilson BC, Parker RP (1975) Digital processing of images from a zone-plate camera. Phys Med Biol 20: 757–770

    Article  PubMed  CAS  Google Scholar 

  • Wolf AP (1981) Special characteristics and potential for radiopharmaceuticals for positron emission tomography. Semin Nucl Med XI: 2–12

    Article  Google Scholar 

  • Wong WH, Mullani NA, Philippe EA, Hartz R, Gould KL (1983) Image improvement and design optimization of the time-of-flight PET. J Nucl Med 24: 52–60

    PubMed  CAS  Google Scholar 

  • Wood SL, Macovski A, Morf M (1979) Reconstruction with limited data using estimation theory. In: Raviv et al. (eds) Computer aided tomography and ultrasonics in medicine. North-Holland, Amsterdam, p 219

    Google Scholar 

  • Yamamoto M, Kawaguchi F (1982) Quad-detector arrangement and sampling characteristics in rotary positron tomography: Positologica II. IEEE Trans Med Imag MI-1/2: 136–142

    Google Scholar 

  • Yamamoto M, Ficke DC, Ter-Pogossian NM (1982a) Experimental assessment of the gain-achieved by the utilization of time-of-flight information in a positron emission tomograph (Super PETT I). IEEE Trans Med Imag MI-1/3: 187–192

    CAS  Google Scholar 

  • Yamamoto M, Ficke DC, Ter-Pogossian MM (1982b) Performance study of PETT VI, a positron computed tomograph with 288 cesium fluoride detectors. IEEE Trans Nucl Sci NS-29/ 1: 529–533

    Article  Google Scholar 

  • Yamamoto YL, Thompson CJ, Meyer E, Robertson JS, Feindel W (1977) Dynamic positron emission tomography for study of cerebral hemodynamics in a cross section of the head using positron-emitting GA-69-EDTA and KR-77. J Comput Assist Tomogr 1: 43–56

    Article  PubMed  CAS  Google Scholar 

  • Yamashita Y, Uchida H, Yamashita T, Hayashi T (1984) Recent developments in detectors for high spatial resolution positron CT. IEEE Trans Nucl Sci NS-31: 424–428

    Google Scholar 

  • Yano Y, Chu P, Budinger TF, Grant PM, Ogart AE, Barnes JW, O’Brain HA Jr, Hoop B Jr (1977) Rubidium-82 generators for imaging studies. J Nucl Med 18: 46–50

    PubMed  CAS  Google Scholar 

  • Yen CK, Budinger TF (1981) Evaluation of blood-brain barrier permeability changes in rhesus monkeys and man using Rb-82 and positron emission tomography. J Comput Assist Tomogr 5: 792–799

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Jordan, K. (1988). Meßtechnik in der Emissions-Computertomographie. In: Hundeshangen, H. (eds) Nuklearmedizin / Nuclear Medicine. Handbuch der Medizinischen Radiologie / Encyclopedia of Medical Radiology, vol 15 / 1 / B. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83146-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83146-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83147-8

  • Online ISBN: 978-3-642-83146-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics