Stereotactic Brachytherapy of Gliomas

  • Chr. B. Ostertag
Conference paper


Although many surgeons claim that by using microscopic techniques they can reach virtually all compartments in the brain, others consider this approach mechanical, particularly in cases of intrinsic tumors in functionally critical areas. Radiotherapy is therefore preferred as it is the least traumatic treatment for “nonresectable” tumors.


External Beam Radiotherapy Anaplastic Astrocytoma Pilocytic Astrocytoma Healthy Brain Fibrillary Astrocytoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blasberg RG, Fenstermacher JD, Patlak CS (1983) Transport of alpha-aminoisobutyric acid across brain capillary and cellular membranes. Journal of Cerebral Blood Flow and Metabolism 3: 8–32PubMedCrossRefGoogle Scholar
  2. Caveness WF (1980) Experimental observations: Delayed necrosis in normal monkey brain. In: Gilbert HA and Kagan AR (eds) Radiation damage to the nervous system. Raven Press, New YorkGoogle Scholar
  3. Fowler JF, Denekamp J (1977) Radiation effects on normal tissues. In: Becker FE (ed) Cancer — A comprehensive treatise. Plenum Press, New York, pp 139–180Google Scholar
  4. Groothuis DR, Wright DC, Ostertag Ch B (1985) Sequential changes of capillary permeability in normal canine brain associated with I-125 interstitial radiotherapy. J Neurosurg (in press)Google Scholar
  5. Gutin PH, Philips TL, Wara WM, Leibel SA, Hosobuchi Y, Levin VA, Weaver KA, Lamb S (1984a) Brachytherapy of recurrent malignant brain tumors with removable high-activity Iodine-125 sources. J Neurosurg 60:61–68PubMedCrossRefGoogle Scholar
  6. Gutin PH, Bernstein M (1984b) Stereotactic interstitial brachytherapy for malignant brain tumors. Prog Tumor Res, vol 28. Karger, Basel, pp 166–182Google Scholar
  7. Hoshino T (1984) A commentary on the biology and growth kinetics of low-grade and high-grade gliomas. J Neurosurg 61:895–900PubMedCrossRefGoogle Scholar
  8. Hoshino T, Barker M, Wilson Ch B, Boldrey EB, Fewer D (1972) Cell kinetics of human gliomas. J Neurosurg 37:15–26PubMedCrossRefGoogle Scholar
  9. Janzer RC, Kleihues P, Ostertag Ch B (1986) Early and late effects on the normal dog brain of permanent interstitial Iridium-192 irradiation. Acta Neuropathol (Berl) 70:91–102CrossRefGoogle Scholar
  10. Kelly PJ, Olson MH, Wright AE (1978) Stereotactic implantation of Iridium-192 into CNS neoplasms. Surg Neurol 10:349–354PubMedGoogle Scholar
  11. Kiessling M, Kleihues P, Gassega E, Mundinger F, Ostertag ChB, Weigel K (1984) Morphology of intracranial tumors and adjacent brain structures following interstitial Iodine-125 radiotherapy. Acta Neurochirurgica [Suppl] 33:281–289Google Scholar
  12. Laws ER, Taylor WF, Clifton MB, Okazaki H (1984) Neurosurgical management of low-grade astrocytoma of the cerebral hemispheres. J Neurosurg 61:665–673PubMedCrossRefGoogle Scholar
  13. Leksell L (1971) Stereotaxis and radiosurgery. An operative system. Charles C Thomas, Springfield, IllGoogle Scholar
  14. Mundinger F, Busam B, Birg W, Schildge J (1979) Results of interstitial Iridium-192 brachy-curie therapy and Iridium-192 protracted long term irradiation. In: Stereotactic cerebral irradiation, INSERM Symposium No 12. Elsevier/North Holland Biomedical Press, Amsterdam, pp 303–319Google Scholar
  15. Ostertag Ch B, Mennel HD, Kiessling M (1980) Stereotactic biopsy of brain tumors. Surg Neurol 14:275–283PubMedGoogle Scholar
  16. Ostertag Ch B, Mundinger F, Weigel K (1981) Biopsie stéréotactique et radiotherapie interstizielle des tumeurs cérébrales. Med et Hyg 39:1994–2008Google Scholar
  17. Ostertag Ch B, Hossmann KA, Kerckhoff W v d (1982) Radiation effects of Iridium-192 implants in the cat brain. Nucl-Med, Band XXI/Heft 3Google Scholar
  18. Ostertag Ch B, Weigel K, Warnke P, Lombeck G, Kleihues P (1983) Sequential morphological changes in the dog brain after interstitial Iodine-125 irradiation. Neurosurgery 13/5:523–528PubMedCrossRefGoogle Scholar
  19. Ostertag Ch B, Groothuis D, Kleihues P (1984a) Experimental data on early and late morphologic effects of permanently implanted gamma and beta sources (Iridium-192, Iodine-125 and Yttrium-90) in the brain. Acta Neurochirurgica [Suppl] 33:271–280Google Scholar
  20. Ostertag Ch B, Wamke P, Kleihues P, Bigner D (1984b) Iodine-125 interstitial irradiation of virally induced dog brain tumors. Neurol Res 6:176–180PubMedGoogle Scholar
  21. Rougier A, Pigneux J, Cohadon F (1984) Combined interstitial and external irradiation of gliomas. Acta Neurochirurgica [Suppl] 33:345–353Google Scholar
  22. Rubinstein LJ (1972) Radiation changes in intracranial neoplasms and the adjacent brain. In: Tumors of the central nervous system, 2nd edn. Armed Forces Inst of Pathology, Washington, DCGoogle Scholar
  23. Sondhaus CA (1981) I-125: Physical properties, photon dosimetry and effectiveness. In: George FW (ed) Modern interstitial and intracavitary radiation cancer management. Masson, New YorkGoogle Scholar
  24. Szikla G, Betti O, Szenthe L, Schlienger M (1981) L’experience actuelle des irradiations stéréotaxiques dans le traitment des gliomes hemispheriques. Neurochirurgie 27:295–298PubMedGoogle Scholar
  25. Szikla G, Schlienger M, Blond S, Daumas-Duport C, Missir O, Miyahara S, Musolino A, Schaub C (1984) Interstitial and combined interstitial and external irradiation of supratentorial gliomas. Results in 61 cases treated 1973–1981. Acta Neurochirurgica [Suppl] 33:355–362Google Scholar
  26. Zeman W (1968) The effects of atomic radiation. In: Minckler J (ed) Pathology of the nervous system, vol 2. McGraw-Hill, New York, pp 864–939Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Chr. B. Ostertag

There are no affiliations available

Personalised recommendations