Regulation of vascular tone by prostaglandins and endothelium-derived relaxing factor

  • Ulrich Förstermann
Conference paper
Part of the Veröffentlichungen aus der Geomedizinischen Forschungsstelle der Heidelberger Akademie der Wissenschaften book series (HD AKAD, volume 1987/88 / 1987/4)


Prostacyclin is the major prostanoid formed in the vascular wall of conduit arteries. The most important source are endothelial cells which represent only about 5% of the total mass of the vascular wall, but produce about 40% of its prostacyclin (Moncada et al. 1977). Prostacyclin is a potent vasodilator (and an inhibitor of platelet aggregation). Under normal conditions vascular production of prostaglandins is low, however, it can be stimulated by a variety of hormones, autacoids and drugs (Schrör 1985) (cf. below). One major function of the prostacyclin produced could be the mediation or attenuation of the effect of other vasodilator or vasoconstrictor agents, respectively.


Fatty Acid Derivative Rabbit Aorta Prostacyclin Synthesis Coeliac Artery Diacyl Phospholipid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Busse R, Trogisch G, Bassenge E (1985) The role of endothelium in control of vascular tone. Basic Res. Cardiol. 80: 475–490PubMedCrossRefGoogle Scholar
  2. Cherry PD, Furchgott RF, Zawadzki JV, Jothianandan D (1982) The role of endothelial cells in the relaxation of isolated arteries by bradykinin. Proc. Natl. Acad. Sci. USA 79: 2106–2110PubMedCrossRefGoogle Scholar
  3. Cocks TM, Angus JA, Campbell JH, Campbell GR (1985) Release and properties of endothelium-derived relaxing factor (EDRF) from endothelial cells in culture. J. Cell Physiol. 123: 310–320PubMedCrossRefGoogle Scholar
  4. Dudel C, Förstermann U Endothelium-dependent vasdilation of resistance arteries in rabbit hindlimb in vivo (in preparation)Google Scholar
  5. Förstermann U, Neufang B (1984) The endothelium-dependent vasodilator effect of acetylcholine: a characterization of the endothelial relaxing factor with inhibitors of arachidonic acid metabolism. Eur. J. Pharmacol. 103: 65–70PubMedCrossRefGoogle Scholar
  6. Förstermann U, Trogisch G, Busse R (1984a) Species dependent differences in the nature of endothelium-derived vascular relaxing factor. Eur. J. Pharmacol. 106: 639–643PubMedCrossRefGoogle Scholar
  7. Förstermann U, Hertting G, Neufang B (1984b) The importance of endogenous prostaglandins other than prostacyclin for the modulation of contractility of some rabbit blood vessels. Br. J. Pharmacol. 81: 623–630PubMedGoogle Scholar
  8. Förstermann U, Neufang B (1985) Endothelium-dependent vasodilation by melittin: are lipoxygenase products involved ? Am. J. Physiol. 249: H14 - H19PubMedGoogle Scholar
  9. Förstermann U, Hertting G, Neufang B (1986a) The role of endothelial and non-endothelial prostaglandins in the relaxation of isolated blood vessels of the rabbit induced by acetylcholine and bradykinin. Br. J. Pharmacol. 87: 521–532PubMedGoogle Scholar
  10. Förstermann U, Goppelt-Strübe M, Frölich JC, Busse R (1986b) Inhibitors of acyl-coenzyme A: lysolecithin acyltransferase activate the production of endothelium-derived vascular relaxing factor. J. Pharmacol. Exp. Ther. 238: 352–359PubMedGoogle Scholar
  11. Förstermann U, Mülsch A, Böhme E, Busse R (1986c) Stimulation of soluble guanylate cyclase by an acetylcholine-induced endothelium-derived factor from rabbit and canine arteries. Circ. Res. 58: 531–538PubMedGoogle Scholar
  12. Förstermann U, Frölich JC Endothelium-dependent relaxations by acetylcholine, A23187 and melittin are suppressed by lipoxygenase inhibitors and by inhibitors of cytochrome P-450 monooxygenase. (submitted a)Google Scholar
  13. Förstermann U, Burgwitz K, Frölich JC The effect of non-steroidal phospholipase inhibitors and glucocorticoids on endothelium-dependent relaxation of rabbit aorta induced by different agents (submitted b)Google Scholar
  14. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature (Lond.) 288: 373–376CrossRefGoogle Scholar
  15. Furchgott RF (1984) The role of endothelium in the responses of vascular smooth muscle to drugs. Annu. Rev. Pharmacol. Toxicol. 24: 175–197PubMedCrossRefGoogle Scholar
  16. Griffith TM, Edwards DH, Lewis MJ, Newby AC, Henderson AH (1984) The nature of endothelium-derived vascular relaxant factor. Nature (Lond.) 308: 645–647CrossRefGoogle Scholar
  17. Lands WEM, Merkl I (1963) Metabolism of glycerolipids. III. Reactivity of various acyl esters of coenzyme A with a’-acylglycerophorylcholine, and positional specificities in lecithin synthesis. J. Biol. Chem. 238: 898–904PubMedGoogle Scholar
  18. Moncada S, Herman AG, Higgs EA, Vane JR (1977) Differential formation of prostacyclin (PGX or PGI2) by layers of the arterial wall. Thromb. Res. 11: 323–344PubMedCrossRefGoogle Scholar
  19. Murad F (1986) Cylic guanosine monophosphate as a mediator of vasodilation. J. Clin. Invest. 78: 1–5PubMedCrossRefGoogle Scholar
  20. Schrör K (1985) Prostaglandin, other eicosanoids and endothelial cells. Basic Res. Cardiol. 80: 502–514Google Scholar
  21. Schrör K (1986) In: Iloprost - 1st International Symposium, R.J. Gryglewski, G. Stock (Eds.) Springer, Berlin (in press)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Ulrich Förstermann
    • 1
  1. 1.Department of Clinical PharmacologyHannover Medical SchoolHannover 61W. Germany

Personalised recommendations