Skip to main content

Mediators of Sepsis

  • Conference paper
Septic Shock

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 4))

Abstract

Despite intensive investigation the pathophysiology of sepsis remains uncertain. Mechanisms and mediators of injury are extremely complex. We will attempt to review available data, especially those concerning the role of “inflammatory cells”, their activators and interactions. Some mechanisms are still hypothetical, because part of the data are quite recent and have often been obtained in vitro only.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eiseman B, Beart R, Norton L (1977) Multiple organ failure. Surg Gynecol Obstet 144: 323–326

    PubMed  CAS  Google Scholar 

  2. Goris RJA, to Boekhorst TPA, Nuytinck JKS, Gimbere JSF (1985) Multiple organ failure. Generalized autodestructive inflammation? Arch Surg 120: 1109–115

    PubMed  CAS  Google Scholar 

  3. Heideman M, Kaijser B, Gelin LE (1978) Complement activation and hematologic, hemodynamic and respiratory reactions early after soft tissue injury. J Trauma 18: 696–700

    Article  PubMed  CAS  Google Scholar 

  4. Heideman M, Hugli TE (1984) Anaphylatoxin generation in multi-system organ failure. J Trauma 24: 1038–1043

    Article  PubMed  CAS  Google Scholar 

  5. Nuytinck JKS, Goris RJA, Redl H, Schlag G, van Munster PJJ (1986) Posttraumatic complications and inflammatory mediators. Arch Surg 121: 886–890

    PubMed  CAS  Google Scholar 

  6. Kapur MM, Jain P, Gidh M (1986) The effect of trauma and serum C3 activation and its correlation with injury severity score in man. J Trauma 26: 464–466

    Article  PubMed  CAS  Google Scholar 

  7. Antrum RM, Solomkin JS (1986) Monocyte dysfunction in severe trauma: evidence for the role of C5a in deactivation. Surgery 100: 29–37

    PubMed  CAS  Google Scholar 

  8. Lamche H (1983) Entwicklung eines Radioimmunoassay für das Komplementspaltprodukt C3a. Dissertation, Technische Universität Wien

    Google Scholar 

  9. Heideman M, Kaijser B, Gelin LE (1978) Complement activation by homogenized muscle tissue. J Surg Res 25: 518–522

    Article  PubMed  CAS  Google Scholar 

  10. Bengtson A, Holmberg P, Heideman M (1987) Inflammatory mediators in patients with ischemic limbs. In: Schlag G, Redl H (eds) Progress in clinical and biological research, subseries: Vienna Shock Forum. Liss Inc, New York, vol 236A, pp 11–18

    Google Scholar 

  11. Fritz H (1980) Proteinase inhibitors in severe inflammatory processes (septic shock and experimental endotoxemia): biochemical, pathophysiological and therapeutic aspects. In: Experpta Media, Ciba Foundation symposium 75 “Protein degradation in health and disease, pp 351–373

    Google Scholar 

  12. Aasen AO, Smith-Erichsen N, Gallimore MJ, Amundsen E (1980) Studies on components of the plasma kallikrein-kinin system in plasma samples from normal individuals and patients with septic shock. In: Schumer W, Spitzer JJ, Marshall BE (eds) Advances in shock research 4. Liss Inc, New York, pp 1–10

    Google Scholar 

  13. Aasen A (1985) The proenzyme functional inhibition index. A new parameter for evaluation of the severely injured and septic patient. Acta Chir Scand, Suppl 522: 211–233

    CAS  Google Scholar 

  14. Wachtfogel YT, Kucich U, James HJ (1983) Human plasma kallikrein releases neutrophil elastase during blood coagulation. J Clin Invest 72: 1672–1677

    Article  PubMed  CAS  Google Scholar 

  15. Goris RJA, Boekholtz WKF, van Bebber IPT, Nuytinck JKS, Schillings PHM (1986) Multiple-organ failure and sepsis without bacteria. An experimental model. Arch Surg 121: 897–901

    Google Scholar 

  16. Bjornson AB, Bjornson HS, Altemeier WA (1981) Reduction in alternative complement pathway mediated C3 conversion following burn injury. Ann Surg 194: 224–231

    Article  PubMed  CAS  Google Scholar 

  17. McCabe WR (1973) Serum complement levels in bacteremia due to gram-negative organisms. N Engl J Med 288: 21–23

    Article  PubMed  CAS  Google Scholar 

  18. Heideman M, Saravis C, Clowes GA (1982) Effect of non-viable tissue and abscesses on complement depletion and the development of bacteremia. J Trauma 22: 527–532

    Article  PubMed  CAS  Google Scholar 

  19. Johnson KD, Cadambi A, Seibert GB (1985) Incidence of adult respiratory distress syndrome in patients with multiple musculoskeletal injuries: effect of early operative stabilization of factures. J Trauma 25: 375–38

    Article  PubMed  CAS  Google Scholar 

  20. Goris RJA (1987) Prevention of ARDS and MOF in trauma-patients, by prophylactic mechanical ventilation and early fracture stabilisation. In: Schlag G, Redl H (eds) Progress in clinical and biological research, subseries: Vienna Shock Forum. Liss Inc, New York, vol 236B, pp 163–174

    Google Scholar 

  21. Dittmer, H, Jochum M, Fritz H (1986) Freisetzung von granulozytärer Elastase and Plasmaproteinveränderungen nach traumatisch hämorrhagischem Schock. Unfallchir 89: 160169

    Google Scholar 

  22. Hosea S, Brown E, Hammer C, Frank M (1980) Role of complement activation in a model of adult respiratory distress syndrome. J Clin Invest 66: 375–382

    Article  PubMed  CAS  Google Scholar 

  23. Flick MR, Perel A, Staub NC (1981) Leukocytes are required for increased lung microvascular permeability after micro-embolization in sheep. Circ Res 48: 344–351

    PubMed  CAS  Google Scholar 

  24. Craddock PR, Fehr J, Brigham KL, Kronenberg RS, Jacob HS (1977) Complement and leucocyte-mediated pulmonary dysfunction in hemodialysis. N Engl J Med 296: 769–774

    Article  PubMed  CAS  Google Scholar 

  25. Heflin AC, Brigham KL (1979) Granulocyte depletion prevents increased lung vascular permeability after endotoxemia in sheep (abstr). Clin Res 27: 399A

    Google Scholar 

  26. Rinaldo JE, Roges RM (1982) Adult respiratory-distress syndrome. Changing concepts of lung injury and repair. N Engl J Med 306: 900–909

    Google Scholar 

  27. Hammerschmidt DE, Weaver LJ, Hudson LD, Craddock PR, Jacob HS (1980) Association of complement activation and elevated plasma-05a with adult respiratory distress syndrome: pathophysiological relevance and possible prognostic value. Lancet I: 947–949

    Google Scholar 

  28. Till GO, Johnson KJ, Kunkel R, Ward PA (1982) Intravascular activation of complement and acute lung injury. Dependency on neutrophils and toxic oxygen metabolites. J Clin Invest 69: 1126–1135

    Google Scholar 

  29. Pacher R, Redl H, Woloszczuk W (1987) Neopterin and granulocyte elastase in septicemic patients prone to develop multi-organ failure. In: Blair JA, Pfleiderer W, Wachter H (eds) Biochemical and Clinical Aspects of Pteridines, vol 5. 6th International Workshop. Walter de Gruyter, Berlin New York. In press

    Google Scholar 

  30. Redl H, Pacher R, Woloszczuk W (1987) Acute pulmonary failure - comparison of neopterin and granulocyte elastase in septic and non-septic patients. In: Blair JA, Pfleiderer W, Wachter H (eds) Biochemical and Clinical Aspects of Pteridines, vol 5. 6th International Workshop. Walter de Gruyter, Berlin New York. In press

    Google Scholar 

  31. Laufe MD, Simon RH, Flint A, Keller JB (1986) Adult respiratory distress syndrome on neutropenic patients. Am J Med 80: 1022–1026

    Article  PubMed  CAS  Google Scholar 

  32. Mason R, Williams MC, Clements JA (1975) Isolation and identification of type 2 alveolar epithelial cells. Chest 67: S36 - S37

    Google Scholar 

  33. Movat HZ, Burrowes CE, Johnston MG, Rettl C (1986) Effect of leukotriene B4, C5a desArg and prostaglandin E2 on PMN-accumulation and on the microcirculation. In: Cohen S, Hayashi H, Saito K, Takada A (eds) Chemical mediators on inflammatory and immunity. Academic Press, Tokyo, pp 31–51

    Google Scholar 

  34. Knöller J, Schönfeld W, Joka T, Sturm J, König W (1987) Generation of leukotrienes in polytraumatic patients with adult respiratory distress syndrome (ARDS) In: Schlag G, Redl H (eds) Progress in clinical and biological research, subseries: Vienna Shock Forum. Liss Inc, New York, vol 236A, pp 311–316

    Google Scholar 

  35. Luderitz T, Schade U, Rietschel ET (1986) Formation and metabolism in leukotriene C4 in macrophage exposed to bacterial lipopolysaccharide. Eur J Biochem 155: 377–382

    Article  PubMed  CAS  Google Scholar 

  36. Flynn JT (1985) The role of arachidonic acid metabolites in endotoxin shock. II: Involvement of prostanoids and thromboxanes. In: Hinshaw LB (ed) Pathophysiology of endotoxin. Elsevier Science Publishers, Amsterdam, pp 237–285

    Google Scholar 

  37. Neuhof H, Seeger W, Suttrop N (1987) Activation of the pulmonary arachidonic acid system and its consequences for hemodynamics and fluid balance. In: Schlag G, Redl H (eds) Progress in clinical and biological research, subseries: Vienna Shock Forum. Liss Inc, New York, vol 236A, pp 289–300

    Google Scholar 

  38. Hua XY, Dahlen SE, Lungberg JM, Hammarström S, Hedqvist P (1985) Leukotries C4, D4 and E4 cause widespread and extensive plasma extravasation in the guinea pig. Naunyn-Schmiedeber’s Arch Pharmacol 330: 136–141

    Article  CAS  Google Scholar 

  39. Denzlinger C, Rapp S, Hagmann W, Keppler D (1985) Leukotrienes as mediators in tissue trauma. Science 230: 330–332

    Article  PubMed  CAS  Google Scholar 

  40. Bone RC, Jacobs ER, Wilson FJ (1987) Increased hemodynamic and survival with endotoxin and septic shock with ibuprofen treatment. In: Schlag G, Redl H (eds) Progress in clinical and biological research, subseries: Vienna Shock Forum. Liss Inc, New York, vol 236A, pp 327–332

    Google Scholar 

  41. Keppler D, Hagmann W, Denzlinger C (1987) Leukotrienes as mediators in endotoxin shock and tissue trauma. In: Schlag G, Redl H (eds) Progress in clinical and biological research, subseries: Vienna Shock Forum. Liss Inc, New York, vol 236A, pp 301–310

    Google Scholar 

  42. Bahrami S, Mihm F, Thurnher M, et al (1987) Effect of the non-steroidal antiinflammatory agent BW755C in rat and sheep endotoxemia. In: Schlag G, Redl H (eds) Progress in clinical and biological research, subseries: Vienna Shock Forum. Liss Inc, New York, vol 236A, pp 347–360

    Google Scholar 

  43. Dahlen SE, Björk J, Hedqvist P (1981) Leukotrienes promote plasma leakage and leukocyte adhesion in postcapillary venules: In vivo effects with relevance to the acute inflammatory response. Proc Natl Acad Sci USA 78: 3887–3891

    Google Scholar 

  44. Seeger W, Stähler G, Neuhof H, Roka L (1982) Increased pulmonary vascular resistance and permeability due to arachidonate metabolism in isolated rabbit lungs. Prostaglandins 23: 157–173

    Article  PubMed  CAS  Google Scholar 

  45. Inthorn D, Szczeponik T, Mühlbayer D, Jochum M, Redl H (1987) Studies of granulocyte function (chemiluminescence response) in postoperative infection. In: Schlag G, Redl H (eds) Progress in clinical and biological research, subseries: Vienna Shock Forum. Liss Inc, New York, vol 236B, pp 51–58

    Google Scholar 

  46. Schlag G, Voigt WH, Schnells G, Glatzl A (1978) Vergleichende Untersuchungen der UItrastruktur von menschlicher Lunge und Skelettmuskulatur im Schock. II. Anaesthesist 26: 612–622

    Google Scholar 

  47. Schlag G, Redl H (1985) Morphology of the human lung after traumatic shock. In: Zapol WM, Falke KJ (eds) Acute Respiratory Failure. Marcel Dekker Inc, New York Basel, pp 161–183

    Google Scholar 

  48. Redl H, Schlag G, Hammerschmidt DE (1984) Quantitative assessment of leukostasis in experimental hypovolemic-traumatic shock. Acta Chir Scan 150: 113–117

    CAS  Google Scholar 

  49. Hammerschmidt DE, Redl H, Schlag G (1983) Quantifying pulmonary leukostasis in hypovolemic traumatic shock. Clin Res 31: 745A

    Google Scholar 

  50. Schlag G, Redl H (1983) Posttraumatic ultrastructural changes and the role of granulocytes in the lungs, liver and skeletal muscle. Intens Care Med 9: 148

    Google Scholar 

  51. Cochrane CG, Spragg RG, Revak SD, Cohen AB, McGuire WW (1983) The presence of neutrophil elastase and evidence of oxidation activity in bronchoalveolar lavage fluid of patients with adult respiratory distress syndrome. Am Rev Resp Dis 127: S25 - S26

    PubMed  CAS  Google Scholar 

  52. Yoshinaga M, Nakamura S, Goto F, Ohkawara S, Goto K, Kitamura M (1986) Inflammation-induced immune enhancement and its mediation by an PMN-derived soluble factor which resembles interleukin 1. In: Cohen S, Hayashi H, Saito K, Takada A (eds) Chemical mediators on inflammatory and immunity. Academic Press, Tokyo, pp 147–171

    Google Scholar 

  53. Tiku K, Tiku ML, Skosey JL (1986) Interleukin 1 production by human polymorphonuclear neutrophils. J Immunol 136: 3677–3685

    PubMed  CAS  Google Scholar 

  54. Tiku K, Tiku ML, Liu S, Skosey JL (1986) Normal human neutrophils are a source of a specific interleukin 1 inhibitor. J Immunol 136: 3686–3692

    PubMed  CAS  Google Scholar 

  55. Abraham E, Regan RF (1985) The effect of hemorrhage and trauma on interleukin 2 production. Arch Surg 120: 1341–1344

    PubMed  CAS  Google Scholar 

  56. Watson JD, Arden L, Shaw J, et al (1979) Molecular and quantitative analysis of helper T-cell replacing of factors on the induction of antigen-sensitive B and T lymphocytes. J Immunol 122: 1633–1639

    PubMed  CAS  Google Scholar 

  57. Smith KA, Lachman LB, Oppenheim JJ, et al (1980) The functional relationship of the interleukins. J Exp Med 151: 1551–1556

    Article  PubMed  CAS  Google Scholar 

  58. Farrar WL, Johnson HM, Farrar JJ (1981) Regulation of the production of immune interferon and cytotoxic T lymphocytes by interleukin-2. J Immunol 126: 1120–1125

    PubMed  CAS  Google Scholar 

  59. Blazar BA, Rodrick ML, O’Mahony JB, et al (1986) Suppression of natural killer-cell function in humans following thermal and traumatic injury. J Clin Immunol 6: 26–36

    Article  PubMed  CAS  Google Scholar 

  60. Bird J, Sheng YJ, Giroud JP (1984) Effects of supernatants and lysates of polymorphonuclear leucocytes: macrophage stimulatory factors. Brit J Exp Path 65: 243–250

    PubMed  CAS  Google Scholar 

  61. Meakins JL, Marshall JC (1986) Multiple-organ-failure syndrome. The gastrointestinal tract: The “motor” of MOF. Arch Surg 121: 196–208

    Google Scholar 

  62. Haglund U (1973) The small intestine in hypotension and hemorrhage. An experimental cardiovascular study in the cat. Acta Physiol Scand Suppl 387

    Google Scholar 

  63. McNeil JR, Stark RD, Greenway CV (1970) Intestinal vasoconstriction after hemorrhage: Role of vasopressin and angiotensin. Am J Physiol 219: 1342–1345

    Google Scholar 

  64. Parks DA, Shah AK, Granger DN (1984) Oxygen radicals: Effect on intestinal vascular permeability. Am J Physiol 247: G167 - G170

    PubMed  CAS  Google Scholar 

  65. Schoenberg MH, Younse M, Haglund U, Fredholm BB, Schildberg FW (1985) Die Bedeutung der Sauerstoffradikalen in der Pathogenese postischämischer Gewebeschäden. Langenbecks Arch Chir Supp1: 59–62

    Google Scholar 

  66. Younes M, Schoenberg MH, Jung H, Fredholm BB, Haglund U, Schildberg FW (1984) Oxidative tissue damage following regional intestinal ischemia and repersusion in the cat. Res Exp Med 184: 259–264

    Article  CAS  Google Scholar 

  67. Olofsson P, Nylander G, Olsson P (1985) Endotoxin-transport routes and kinetics in intestinal ischemia. Acta Chir Scan 151: 635–639

    CAS  Google Scholar 

  68. Heddle RJ, LaBrooy JT, Shearman DJC (1982) Escherichia coli antibody-secreting cells in the human intestine. Clin Exp Imunol 48: 469–476

    CAS  Google Scholar 

  69. Wright R (1982) Immunology of the gastrointestinal tract and liver. Practitioner 226: 20272032

    Google Scholar 

  70. Pohlman TH, Stanness KA, Beatty PG, Ochs HD, Hharlan JM (1986) An endothelial cell surface factor(s) induced in vitro by lipopolysaccharide, interleukin 1, and tumor necrosis factor-alpha increases neutropil adherence by a CDw18-dependent mechanism. J Immunol 136: 4548–4553

    PubMed  CAS  Google Scholar 

  71. Schoenberg MH, Muhl E, Sellin D, et al (1984) Posthypotensive generation of superoxide free radicals–possible role in the pathogenesis of the intestinal mucosal damage. Acta Chir Scand 150: 301–309

    PubMed  CAS  Google Scholar 

  72. Pardy BJ, Spencer RC, Dudley HAF (1977) Hepatic reticuloendothelial protection against bacteremia in experimental hemorrhagic shock. Surgery 81: 193–197

    PubMed  CAS  Google Scholar 

  73. Beutler B, Tkacenko V, Milsark I, Krochin N, Cerami A (1986) Effect of gamma interferon on cachectin expression by mononuclear phagocytes. J Exp Med 164: 1791–1796

    Article  PubMed  CAS  Google Scholar 

  74. Kawakami M, Pekala PH, Lane MD, Cerami A (1982) Lipoprotein lipase suppression in 3T3–L1 cells by an endotoxin-induced mediator from exudate cells. Proc Natl Acad Sci USA 79: 912–916

    Article  PubMed  CAS  Google Scholar 

  75. Beutler B, Cerami A (1986) Cachectin and tumor necrosis factor as two sides of the same biological coin. Nature 320: 584–588

    Article  PubMed  CAS  Google Scholar 

  76. Tracey KJ, Beutler B, Lowrey SF, et al (1986) Shock and tissue injury induced by recombinant human cachectin. Science 234: 470–474

    Article  PubMed  CAS  Google Scholar 

  77. Clowes GHA, Hirsch E, George BC, Bigatello LM, Mazuski JE, Villee CA (1985) Survival from sepsis. The significance of altered protein metabolism regulated by proteolysis inducing factor, the circulating cleavage product of interleukin 1. Ann Surg 202: 446–458

    Article  PubMed  Google Scholar 

  78. Bachwich PR, Chensue SW, Larrick JW, Kunkel SL (1986) Tumor necrosis factor stimulates interleukin-1 and prostaglandin E2 production in resting macrophages. Biochem Biophys Res Commun 136: 94–101

    Article  PubMed  CAS  Google Scholar 

  79. Cannon JG, Evans WJ, Hughes VA, et al (1986) Physiological mechanisms contributing to increased interleukin-1 secretion. J Appl Physiol 61: 1869–1874

    PubMed  CAS  Google Scholar 

  80. Dinarello CA (1984) Interleukin-1 and the pathogenesis of the acute-phase response. N Engl J Med 311: 1413–1418

    Article  PubMed  CAS  Google Scholar 

  81. Dinarello CA, Cannon JG, Wolff SM, et al (1986) Tumor necrosis factor (cachectin) is an endogenous pyrogen and induces production of interleukin 1. J Exp Med 163: 14331450

    Article  PubMed  CAS  Google Scholar 

  82. Cybulsky MI, Colditz IG, Movat HZ (1986) The role of interleukin 1 in neutrophil leukocyte emigration induced by endotoxin. Am J Pathol 124: 367–372

    PubMed  CAS  Google Scholar 

  83. Chouaib S, Welte K, Mertelsmann R, Dupont B (1985) Prostaglandin E2 acts at two distinct pathways of T lymphocyte activation: Inhibition of interleukin 2 production and down-regulation of transferrin receptor expression. J Immunol 135: 1172–1179

    PubMed  CAS  Google Scholar 

  84. Akiyoshi T, Koba F, Miyazaki S, Arinaga S, Wada T, Tsuji H (1984) Immunodepression after surgery: Impaired production of interleukin 2. Jpn J Surg 14: 384–386

    Article  PubMed  CAS  Google Scholar 

  85. Filkins JP (1985) Monokines and the metabolic pathophysiology of septic shock. Fed Proc 44: 300–304

    PubMed  CAS  Google Scholar 

  86. Huber Ch, Fuchs D, Niederwieser D, et al (1984) Neopterin„ ein neuer biochemischer Marker zur klinischen Erfassung zellulärer Immunreaktionen. Klin Wochenschr 62: 103113

    Article  PubMed  CAS  Google Scholar 

  87. Huber CH, Batchelor JR, Fuchs D, et al (1984) Immune-response associated production of Neopterin release from macrophages primarily under control of Interferon-gamma. J Exp Med 160: 310–316

    Article  PubMed  CAS  Google Scholar 

  88. Strohmaier W, Redl H, Schlag G, Inthorn D (1987) Elevated D-erythro-Neopterin levels in intensive care patients with and without septic complications. In: Schlag G, Redl H (eds) Progress in clinical and biological research, subseries: Vienna Shock Forum. Liss Inc, New York, vol 236B, pp 59–66

    Google Scholar 

  89. Schleimer R, Rutledge BK (1986) Cultured human vascular endothelial cells acquire adhesiveness for neutrophils after stimulation with interleukin 1, endotoxin, and tumor-promoting phorbol diesters. J Immunol 136: 649–654

    PubMed  CAS  Google Scholar 

  90. Nawroth PP, Stern DM (1986) Implication of thrombin formation on the endothelial cell surface. Semin Thromb Hemostasis 12: 197–199

    Article  CAS  Google Scholar 

  91. Bevilacqua MP, Pober JS, Majeau GR, Fiers W, Cotran RS, Gimbrone MA (1986) Recombinant tumor necrosis factor induces procoagulant activity in cultured human vascular endothelium: characterization and comparison with the actions of interleukin 1. Proc Natl Acad Sci USA 83: 4533–4537

    Article  PubMed  CAS  Google Scholar 

  92. Libby P, Ordovas JM, Auger KR, Robbins AH, Birinyi LK, Dinarello CA (1986) Endotoxin and tumor necrosis factor induced interleukin-1 gene expression in adult human vascular endothelial cells. Am J Pathol 124: 179–185

    PubMed  CAS  Google Scholar 

  93. Schwartz BS, Montoe MC (1986) Human platelet aggregation is initiated by peripheral blood mononuclear cells exposed to bacterial lipopolysaccharide in vitro. J Clin Invest 78: 1136–1141

    Article  PubMed  CAS  Google Scholar 

  94. Yoshihawa T, Tanaka KR, Guze LB (1971) Infection and disseminated intravascular coagulation. Medicine (Baltimore) 50: 237–258

    Article  Google Scholar 

  95. Beller FK (1969) The role of endotoxin in DIC. Thromb Diath Haemorrh 36 (Suppl): 125128

    Google Scholar 

  96. Bevilacqua MP, Pober JS, Wheeler ME, Cotran RS, Gimbrone MA (1985) Interleukin-1 activation of vascular endothelium. Effects on procoagulant activity and leukocyte adhesion. Am J Pathol 121: 393–403

    Google Scholar 

  97. Schraufstätter IU, Hinshaw DB, Hyslop PA, Spragg RG, Cochrane CG (1986) Oxidant injury of cells. DNA strand-breaks activate polyadenosine diphosphate-ribose polymerase and lead to depletion of nicotinamide adenine dinucleotide. J Clin Invest 77: 1312–1320

    Google Scholar 

  98. Westaby S, Fleming J, Royston D (1986) Acute lung injury during cardiopulmonary bypass, the role of neutrophil sequestration and lipid peroxidation. Trans Am Soc Artif Intern Organs 31: 604–609

    Google Scholar 

  99. Nerlich ML, Seidel J, Regel G, Nerlich AG, Sturm JA (1986) Klinisch experimentelle Untersuchungen zum oxidativen Membranschaden nach schwerem Trauma. Langenbecks Arch Chir Supp1: 217–222

    Google Scholar 

  100. Demling R, Lalonde C, Jin U, Ryan P, Fox R (1986) Endotoxemia causes increased lung tissue lipid peroxidation and increased circulating lipid peroxides in unanesthetized sheep. J Appl Physiol 60: 2094–2100

    PubMed  CAS  Google Scholar 

  101. Smith-Erichsen N, Aasen AO (1984) Evaluation of severity and prognosis in early stages of septicemia by means of chromogenic peptide substrate assays. Eur Surg Res 16: Supp1: 140–146

    Google Scholar 

  102. Redl H, Hammerschmidt DE, Schlag G (1983) Augmentation by platelets of granulocyte aggregation in response to chemotaxins: Studies utilizing an improved cell preparation technique. Blood 61: 125–131

    Google Scholar 

  103. Redl H, Lamche H, Schlag G (1983) Red cell count dependence of whole blood granulocyte luminescence. Klin Wochenschr 61: 163–164

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schlag, G., Redl, H. (1987). Mediators of Sepsis. In: Vincent, J.L., Thijs, L.G. (eds) Septic Shock. Update in Intensive Care and Emergency Medicine, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83108-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83108-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-17861-3

  • Online ISBN: 978-3-642-83108-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics