Skip to main content

Sensitizers in Radiotherapy

  • Chapter
Innovations in Radiation Oncology

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 111 Accesses

Abstract

The fact that radiotherapy is not 100% successful in controlling local disease means that there is a basis for improving the cure rate of cancer using physical or chemical modifiers of the radiation response of normal or malignant tissues. The goal for the use of sensitizers is to increase the sensitivity of tumor cells to a greater extent than those of the normal tissues which are irradiated along with the tumor. A number of diverse approaches to achieve this goal have emerged from laboratory studies. Some have been tested clinically, while others are still in the development stages. This chapter will review the more promising of these approaches, with the emphasis where possible on their clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams GE, Ahmed I, Sheldon PW, Stratford IJ (1984) Radiation sensitization and chemopotentiation: RSU 1069, a compound more efficient than misonidazole in vitro and in vito. Br J Cancer 49: 571–577

    Article  PubMed  CAS  Google Scholar 

  • Alper T (1956) The modification of damage caused by primary ionization of biological targets. Radiat Res 5: 573–586

    Article  PubMed  CAS  Google Scholar 

  • Bagshaw MA, Doggett RLS, Smith KC, Kaplan HS, Nelsen TS (1967) Intra-arterial 5-bromodeoxyuridine and X-ray therapy. Radiology 99: 886–894

    CAS  Google Scholar 

  • Belli JA, Shelton M (1969) Potentially lethal radiation damage: repair by mammalian cells in culture. Science 165: 490–492

    Article  PubMed  CAS  Google Scholar 

  • Ben-Hur E, Utsumi H, Elkind MM (1984) Inhibitors of poly ( ADP-ribose) synthesis enhance X-ray killing of log-phase Chinese hamster cells. Radiat Res 97: 546–555

    Article  PubMed  CAS  Google Scholar 

  • Bridges BA (1969) Sensitization of organisms to radiation by sulphydryl-binding agents. In: Advances in Radiation Biology, vol 3. Academic Press, New York, pp 123–187

    Google Scholar 

  • Brown DM, Dionet C, Brown JM (1984) Inhibition of X-ray-induced potentially lethal damage ( PLD) repair in aerobic plateau-phase Chinese hamster cells by misonidazole. Radiat Res 97: 162–170

    Article  PubMed  CAS  Google Scholar 

  • Brown DM, Evans JW, Brown JM (1984) The influence of inhibitors of poly (ADP-ribose) polymerase on X-ray-induced potentially lethal damage repair. Br J Cancer 49, Suppl 22: 49–53

    Google Scholar 

  • Brown DM, Gonzales-Mendez R, Brown JM (1983) Factors influencing intracellular uptake and radiosensitization by 2-nitroimidazoles in vitro. Radiat Res 93: 492–505

    Article  PubMed  CAS  Google Scholar 

  • Brown JM (1975) Exploitation of kinetic differences between normal and malignant cells. Radiology 114: 189–197

    PubMed  CAS  Google Scholar 

  • Brown JM (1977) Effects of radiation and chemotherapeutic agents on the incidence and treatment of blood-borne metastases. Gann Monograph on Cancer Research 20: 207–225

    CAS  Google Scholar 

  • Brown JM (1979) Evidence for acutely hypoxic cells in mouse tumours, and a possible mechanism of reoxygenation. Br J Radiol 52: 650–656

    Article  PubMed  CAS  Google Scholar 

  • Brown JM (1984) Clinical trials of radiosensitizers: What should we expect? Int J Radiat Oncol Biol Phys 10: 425–429

    Article  PubMed  CAS  Google Scholar 

  • Brown JM (1984) Radiosensitizers and radioprotectors: Current status, and future prospects. In: Broerse JJ, Barendsen GW, Kal HB, Van der Kogel AJ (eds) Proceedings of 7th International Congress of Radiation Research Reviews and Summaries, pp 281–289. Martinus Nijhoff, Amsterdam

    Google Scholar 

  • Brown JM, Ellis F (1969) Use of pyrimidine analogues in radiotherapy (letter to editor). Br J Radiol 42: 155–157

    Article  PubMed  CAS  Google Scholar 

  • Brown JM, Goffinet DR, Cleaver JE, Kallman RF (1971) Preferential radiosensitization of mouse sarcoma relative to normal skin by chronic intra-arterial infusion of halogenated pyrimidine analogs. J Nat Cancer Inst 47: 75–89

    PubMed  CAS  Google Scholar 

  • Brown JM, Lee WW (1980) Pharmacokinetic considerations in radiosensitizer development. In: Brady LW (ed) Radiation Sensitizers: Their Use in the Clinical Management of Cancer. Masson: New York, pp 2–13

    Google Scholar 

  • Brown JM, Workman P (1980) Partition coefficient as a guide to the development of radiosensitizers which are less toxic than misonidazole. Radiat Res 82: 171–190

    Article  PubMed  CAS  Google Scholar 

  • Brown JM, Yu NY, Brown DM, Lee WW (1981) SR-2508: A 2-nitroimidazole amide which should be superior to misonidazole as a radiosensitizer for clinical use. Int J Radiat Oncol Biol Phys 7: 695–703

    Article  PubMed  CAS  Google Scholar 

  • Bump EA, Yu NY, Brown JM (1982) Radiosensitization of hypoxic tumor cells by depletion of intracellular glutathione. Science 217: 544–545

    Article  PubMed  CAS  Google Scholar 

  • Bush RS, Jenkin RDT, Allt WEC, Beale FA, Bean H, Dembo AJ, Pringle JF (1978) Definitive evidence for hypoxic cells influencing cure in cancer therapy. Br J Cancer 37, Suppl III:302–306

    Google Scholar 

  • Cade IS, McEwen JB, Dische S, Saunders MI, Watson ER, Halnan KE, Wiernik G, Perrins DJD, Sutherland I (1978) Hyperbaric oxygen and radiotherapy: a Medical Research Council trial in carcinoma of the bladder. Br J Radiol 51: 876–878

    Article  PubMed  CAS  Google Scholar 

  • Chapman JD, Reuvers AP, Borsa J, Greenstock CL (1973) Chemical radioprotection and radiosensitization of mammalian cells growing in vitro. Radiat Res 56: 291–306

    Article  PubMed  CAS  Google Scholar 

  • Coleman CN, Hirst VK, Brown DM, Halsey J (1984) The effect of vitamin B6 on the neurotoxicity and pharmacology of desmethylmisonidazole and misonidazole: Clinical and laboratory studies. Int J Radiat Oncol Biol Phys 10: 1381–1386

    Article  PubMed  CAS  Google Scholar 

  • Collins JM, Dedrick RL, King FG, Speyer JL, Myers CD (1980) Non-linear pharmacokinetic models for 5-fluorouracil in man: Intravenous and intraperitoneal routes. Clin Pharmac Ther 28: 235–246

    Article  CAS  Google Scholar 

  • Cornforth MN, Bedford JS (1983) X-ray induced breakage and rejoining of human interphase chromosomes. Science 222: 1141–1143

    Article  PubMed  CAS  Google Scholar 

  • Crabtree HG, Cramer W (1933) The action of radium on cancer cells II Some factors determining the susceptibility of cancer cells to radium. Proc Roy Soc B 113: 238–250

    Article  CAS  Google Scholar 

  • Denekamp J (1973) Changes in the rate of repopulation during multi-fraction irradiation of mouse skin. Br J Radiol 46: 381–387

    Article  PubMed  CAS  Google Scholar 

  • Denekamp J (1983) Does physiological hypoxia matter in cancer therapy? In: Steel GG, Adams GE, Peckham MJ (eds) The Biological Basis of Radiotherapy. Elsevier: Amsterdam, pp 139–155

    Google Scholar 

  • Dische S (1983) Clinical trials with hypoxic cell sensitizers — the European experience. In: Mirand EA, Hutchinson WB, Mihich E (eds) Proceedings of the 13th International Cancer Congress, Part D: Research and Treatment. Alan R Liss Inc: New York, pp 293–303

    Google Scholar 

  • Dische S (1984) Randomized controlled clinical trials of the chemical sensitizer for hypoxic cells — misonidazole. Radiosensitization Newsletter 3:No 4, 5

    Google Scholar 

  • Dische S, Anderson PJ, Sealy R, Watson ER (1983) Carcinoma of the cervix — anaemia, radiotherapy and hyperbaric oxygen. Br J Radiol 56: 251–255

    Article  PubMed  CAS  Google Scholar 

  • Dische S, Saunders MI, Anderson P, Stratford MRL, Minchington AI (1982) Clinical experience with nitroimidazoles as radiosensitizers. Int J Radiat Oncol Biol Phys 8: 335–338

    Article  PubMed  CAS  Google Scholar 

  • Dische S, Saunders MI, Anderson P, Urtasun RC, Karcher KH, Kogelnik HD, Bleehen N, Phillips TL, Wasserman TH (1978) Neurotoxicity of misonidazole — pooling of data from 5 centers. Br J Radiol 51: 1023–1024

    Article  Google Scholar 

  • Dische S, Saunders MI, Dunphy EP, Bennet MH, des Rochers C, Stratford MRL, Minchington A (1986) Concentrations achieved in human tumors after administration of misonidazole, SR 2508 and Ro 03–8799. Int J Radiat Oncol Biol Phys 12: 1109–1111

    Article  PubMed  CAS  Google Scholar 

  • Djordjevic B, Szybalski W (1960) Genetics of human cell lines III Incorporation of 5-bromo and 5-iododeoxyuridine into the deoxyribonucleic acid of human cells and its effect of radiation sensitivity. J Exp Med 112: 509–531

    Article  PubMed  CAS  Google Scholar 

  • Dritschilo A, Piro A, Belli JA (1979) Interaction between radiation of drug damage in mammalian cells III The effect of Adriamycin and actinomycin-D on the repair of potentially lethal radiation damage. Int J Radiat Biol 35: 549–560

    Article  CAS  Google Scholar 

  • Ensminger WD, Frie E (1978) High-dose intravenous and hepatic artery infusions of thymidine. Clin Pharmac Ther 24: 610–615

    CAS  Google Scholar 

  • Erickson RL, Szybalski W (1963) Molecular radiobiology of human cell lines V Comparative radiosensitizing properties of 5-halodeoxycytidines and 5-halodeoxyuridines. Radiat Res 20: 252–262

    Article  Google Scholar 

  • Giusti G, Mangoni C, De Petrocellis B, Scarano E (1970) Deoxycytidine deaminase in normal and neoplastic human tissues. Enzym Biol Clin 11: 375–383

    CAS  Google Scholar 

  • Goffinet DR, Brown JM (1977) Comparison of intravenous and intra-arterial pyrimidine infusion as a means of radio-sensitizing tumors in vivo. Radiology 124: 819–822

    PubMed  CAS  Google Scholar 

  • Goffinet DR, Brown JM, Bagshaw MA, Kaplan HS (1972) Prolonged carotid arterial radiosensitizer infusion and radiation therapy of mouse gliomas. Am J Roentgenol 114: 7–15

    CAS  Google Scholar 

  • Guichard M, Weichselbaum RR, Little JB, Malaise EP (1984) Potentially lethal damage repair as a possible determinant of human tumor radiosensitivity. Radiother and Oncol 1: 263–269

    Article  CAS  Google Scholar 

  • Gray LH, Conger AD, Ebert M, Hornsey S, Scott OCA (1953) The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol 26: 638–648

    Article  PubMed  CAS  Google Scholar 

  • Grdina DJ, Thames HD, Milas L (1984) Tumor sensitizing effect by misonidazole in a clinically relevant radiation dose range. Int J Radiat Oncol Biol Phys 10: 379–385

    Article  PubMed  CAS  Google Scholar 

  • Greer S (1960) Studies on ultraviolet irradiation of Escherichia coli containing 5-bromouracil in its DNA. J Gen Micro 22: 618–634

    CAS  Google Scholar 

  • Griffith OW, Meister A (1979) Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-nButylhomocysteine Sulphoximine). J Biol Chem 254: 7558–7560

    PubMed  CAS  Google Scholar 

  • Guichard M, de Langen-Omri F, Malaise E-P (1979) Influence of misonidazole on the radiosensitivity of a human melanoma in nude mice: Time-dependent increase in surviving fraction. Int J Radiat Oncol Biol Phys 5: 487–489

    Article  PubMed  CAS  Google Scholar 

  • Guichard M, Malaise EP (1983) Radiosensitizing effects of misonidazole and SR 2508 on a human melanoma transplanted in nude mice: Influence on repair of potentially lethal damage. Int J Radiat Oncol Biol Phys 8: 465–468

    Google Scholar 

  • Hahn GM, Little JB (1972) Plateau-phase cultures of mammalian cells: An in vitro model for human cancer. Curr Top Radiat Res Q 8: 39–83

    CAS  Google Scholar 

  • Hahn GM, Rockwell S, Kallman RF, Gordon LF, Frindel E (1974) Repair of potentially lethal damage in vivo in solid tumor cells after x-irradiation. Cancer Res 34: 352–354

    Google Scholar 

  • Hahn GM, Van Kersen I, Silvestrini B (1984) Inhibition of recovery from potentially lethal damage by lonidamine. Br J Cancer 50: 657–660

    Article  PubMed  CAS  Google Scholar 

  • Harris JN (1979) Mammalian cell studies with diamide. Pharmac Ther 1: 375–384

    Article  Google Scholar 

  • Hill SA, Fowler JF, Minchinton AI, Stratford MRL, Denekamp J (1983) Radiosensitization of a mouse tumour by Ro 03–8799: Acute and protracted administration. Int J Radiat Biol 44: 143–150

    Article  CAS  Google Scholar 

  • Hill RP (1986) Sensitizers and radiation dose fractionation: Results and interpretation. Int J Radiat Oncol Biol Phys 12: 1049–1054

    Article  PubMed  CAS  Google Scholar 

  • Hodgkiss RJ, Middleton RW (1983) Enhancement of misonidazole radiosensitization by an inhibitor of glutathione biosynthesis. Int J Radiat Oncol Biol Phys 43: 179–183

    CAS  Google Scholar 

  • Hoshino T, Sano K (1969) Radiosensitization of malignant brain tumors with bromouridine (thymidine analog). ACTA Radiol Ther Phys Biol 8: 15–26

    PubMed  CAS  Google Scholar 

  • Howard-Flanders P (1960) Effect of oxygen on the radio-sensitivity of bacteriophage in the presence of sulphydryl compounds. Nature 186: 485–487

    Article  PubMed  CAS  Google Scholar 

  • Iliakis G (1980) Effects of ß-arabinofuranosyladenine on the growth and repair of potentially lethal damage in Ehrlich ascites tumor cells. Radiat Res 83: 537–552

    Article  PubMed  CAS  Google Scholar 

  • Iliakis G, Nusse M, Bryant P (1982) Effects of aphidicolin on cell proliferation, repair of potentially lethal damage and repair of DNA strand breaks in Ehrlich ascites tumor cells exposed to x-rays. Int J Radiat Biol 42: 417–434

    Article  CAS  Google Scholar 

  • Jain VK, Holtz GW, Pohlit W, Purohit SC (1977) Inhibition of unscheduled DNA synthesis and repair of potentially lethal x-ray damage by 2’-deoxy-D-glucose in yeast. Int J Radiat Biol 32: 175–180

    Article  CAS  Google Scholar 

  • Kinsella TJ, Russo A, Mitchell JB, Rowland J, Jenkins J, Schwade J, Myers CE, Collins JM, Speyer P, Kornblith P, Smith B, Kufta C, Glatstein E (1984) A phase I study of intermittent intravenous BUdR with conventional irradiation. Int J Radiat Oncol Biol Phys 10: 69–76

    PubMed  CAS  Google Scholar 

  • Kriss JP, Maruyama Y, Tung LA, Bond SB, Revesz L (1963) The fate of 5-bromodeoxyuridine, 5-bromodeoxycytidine, and 5-iododeoxycytidine in man. Cancer Res 23: 260–268

    PubMed  CAS  Google Scholar 

  • Kriss JP, Revesz L (1962) The distribution and fate of bromodeoxyuridine in the mouse and the rat. Cancer Res 22: 254–265

    PubMed  CAS  Google Scholar 

  • Little JB (1969) Repair of sublethal and potentially lethal radiation damage in plateau phase cultures in human cells. Nature 224: 804–806

    Article  PubMed  CAS  Google Scholar 

  • Little JB, Hahn GM, Frindel E, Tubiana M (1973) Repair of potentially lethal damage in vitro and in vivo. Radiology 106: 689–694

    PubMed  CAS  Google Scholar 

  • Maor MH, Peters LJ (1984) Selection of appropriate studies for Phase III trials of radiosensitizers. Int J Radiat Oncol Biol Phys 9: 271

    Google Scholar 

  • McNally NJ, DeRonde J (1980) Radiobiological studies with tumours in situ compared with cell survival. Br J Cancer 41 (suppl 4): 259–265

    Google Scholar 

  • Meister A (1983) Selective modification of glutathione metabolism. Science 220: 472–477

    Article  PubMed  CAS  Google Scholar 

  • Milne ENC, Noonan CD, Margulis AR, Stoughton JA (1969) Vascular supply of pulmonary metastases: Experimental study in rats. Invest Radiol 4: 215–229

    PubMed  CAS  Google Scholar 

  • Minarik L, Marchese M, Zaider M, Hall EJ (1985) Potential lethal damage repair and survival in human AG1522 fibroblasts in plateau phase under acute-and low-doserate 137Cs irradiation. Endocuriether/Hypertherm Oncol 1: 5–8

    Google Scholar 

  • Minchington AI, Rojas A, Smith KA, Soranson JA, Shrieve DC, Jones NR, Bremner JC (1984) Glutathione depletion in tissues after administration of buthionine sulphoximine. Int J Radiat Oncol Biol Phys 10: 1261–1264

    Article  Google Scholar 

  • Mitchell JB, Kinselly TJ, Russo A, McPherson S, Rowland J, Kornblith P, Glatstein E (1983) Radiosensitization of hematopoietic precursor cells (CFUc) in glioblastoma patients receiving intermittent intravenous infusions of bromodeoxyuridine (BUdR). Int J Radiat Oncol Biol Phys 9: 457–463

    Article  PubMed  CAS  Google Scholar 

  • Mitchell JB, Morstyn G, Russo A, Kinsella TJ, Fornace A, McPherson S, Glatstein E (1984) Differing sensitivity to fluorescent light in Chinese hamster cells containing equally incorporated quantities of BUdR versus IUdR. Int J Radiat Oncol Biol Phys 10: 1447–1451

    Article  PubMed  CAS  Google Scholar 

  • Mohler WC, Elkind MM (1963) Radiation response of mammalian cells grown in culture III Modification of X-ray survival of Chinese hamster cells by 5-bromodeoxyuridine. Exp Cell Res 30: 481–491

    Article  CAS  Google Scholar 

  • Morstyn G, Hsu S-M, Kinsella T, Gratzner H, Russo A, Mitchell JB (1983) Bromodeoxyuridine in tumors and chromosomes detected with a monoclonal antibody. J Clin Invest 72: 1844–1850

    Article  PubMed  CAS  Google Scholar 

  • Moulder JE, Rockwell S (1984) Hypoxic fractions of solid tumors: Experimental techniques, methods of analysis, and a survey of existing data. Int J Radiat Oncol Biol Phys 10: 695–712

    Article  PubMed  CAS  Google Scholar 

  • Nakatsugawa S, Kumar A, Ono K, Nishidai T, Yukawa Y, Takahashi M, Abe M, Sugahara T (1982b) Increased tumor curability by radiotherapy combined with PLDR inhibitors in murine cancer. In: Prospective methods of radiation therapy in developing countries. IAEA-TECDOC 266. International Atomic Energy Agency, Vienna, pp 77–86

    Google Scholar 

  • Nakatsugawa S, Sugahara T (1980) Inhibition of x-ray-induced potentially lethal damage (PLD) repair by cordycepin (3’-deoxyadenosine) and enhancement of its action by 2′-deoxycoformycin in Chinese hamster hai cells in the stationary phase in vivo. Radiat Res 84: 265–275

    Article  PubMed  CAS  Google Scholar 

  • Nakatsugawa S, Sugahara T, Kumar A (1982a) Purine nucleoside analogues inhibit the repair of radiation-induced potentially lethal damage in mammalian cells in culture. Int J Radiat Biol 41: 343–346

    Article  CAS  Google Scholar 

  • Palcic B, Faddegon B, Skarsgard LD (1984) The effect of misonidazole as a hypoxic radiosensitizer at low dose. Radiat Res 100: 340–347

    Article  PubMed  CAS  Google Scholar 

  • Paterson MC, Smith BP, Lohman PHM, Anderson AK, Fishman L (1976) Defective excision repair of x-ray-damaged DNA in human (ataxia telangiectasia) fibroblasts. Nature 260: 444–447

    Article  PubMed  CAS  Google Scholar 

  • Perez LM, Mekras JA, Briggle TV, Greer S (1984) Marked radiosensitization of cells in culture to X ray by 5-chlorodeoxycytidine coadministered with tetrahydrouridine, and inhibitors of pyrimidine biosynthesis. Int J Radiat Oncol Biol Phys 10: 1453–1458

    Article  PubMed  CAS  Google Scholar 

  • Phillips RA, Tolmach LJ (1966) Repair of potentially lethal damage in X-irradiated HeLa cells. Radiat Res 29: 414–432

    Article  Google Scholar 

  • Rasey JS, Nelson NJ (1981) Repair of potentially lethal damage following irradiation with x-rays or cyclotron neutrons: Response of the EMT-6/UW tumor system treated under various growth conditions in vitro and in vivo. Radiat Res 85: 69–84

    Article  PubMed  CAS  Google Scholar 

  • Rasey JS, Nelson NJ (1983) Discrepancies between patterns of potentially lethal damage repair in the RIF-1 tumor system in vitro and in vivo. Radiat Res 93: 157–174

    Article  PubMed  CAS  Google Scholar 

  • Russell KJ, Rice GC, Brown JM (1986) In vitro and in vivo radiation sensitization by the halogenated pyrimidine 5-chloro-2’-deoxycytidine. Cancer Res 46: 2883–2887

    PubMed  CAS  Google Scholar 

  • Russo A, Gianni L, Kinsella TJ, Klecker RW, Jenkins J, Rowland J, Glatstein E, Mitchell JB, Collins J, Myers CE (1984) A pharmacologic evaluation of intravenous delivery of BUdR to patients with brain tumors. Cancer Res 44: 1702–1705

    PubMed  CAS  Google Scholar 

  • Sakamoto K, Aritake S (1981) Effects of misonidazole on tumur cell radiation sensitivity and potentially lethal damage repair in vivo and in vitro,. Eur J Cancer Clin Oncol 17: 825–830

    Article  PubMed  CAS  Google Scholar 

  • Saunders MI, Anderson Pi, Bennett MH, Dische S, Minchinton A, Stratford MRL, Tothill M (1984) The clinical testing of Ro 03–8799 — Pharmacokinetics, toxicology, tissue and tumor concentrations. Int J Radiat Oncol Biol Phys 10: 1759–1763

    Article  PubMed  CAS  Google Scholar 

  • Shipley WU, Stanley JA, Courtenay WD, Field SB (1975) Repair of radiation damage in Lewis lung carcinoma cells following in situ treatments with fast neutrons and x-rays. Cancer Res 35: 932–938

    PubMed  CAS  Google Scholar 

  • Smithen CE, Clarke ED, Dale JA, Jacobs RS, Wardman P, Watts ME, Woodcock M (1980) Novel (nitro-l-imidazolyl)-alkanolamines as potential radiosensitizers with improved therapeutic properties. In: Brady LW (ed) Radiation sensitizers: Their use in the clinical management of cancer. Masson: New York, pp 22–32

    Google Scholar 

  • Suit HD, Hewitt R, Urano M (1970) Effect of radiation sensitizing agents in radiation therapy of mouse mammary carcinoma. Radiol 94: 185–195

    Google Scholar 

  • Sutherland RM, Franko AJ (1980) On the nature of the radiobiologically hypoxic fraction in tumors. Int J Radiat Oncol Biol Phys 6: 117–120

    PubMed  CAS  Google Scholar 

  • Thomlinson RH, Gray LH (1955) The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 9: 539–549

    Article  PubMed  CAS  Google Scholar 

  • Twentyman PR, Brown JM, Gray JW, Franko AJ, Scoles MA, Kallman RF (1980) A new mouse tumor model system (RIF-1) for comparison of end-point studies. J Nat Cancer Inst 64: 595–604

    PubMed  CAS  Google Scholar 

  • Urtasun RC, Coleman CN, Wasserman TH, Phillips TL (1984) Clinical trials with hypoxic cell sensitizers: Time to retrench or time to push forward ? Int J Radiat Oncol Bio! Phys 10: 1691–1696

    Article  CAS  Google Scholar 

  • van Ankeren SC, Wheeler KT (1984) Relationship between the repair of radiation-induced DNA damage and recovery from potentially lethal damage in 9L rat brain tumor cells. Cancer Res 44: 1091–1097

    Google Scholar 

  • Watson ER Hainan KE, Dische S, Saunders MI, Cade IS, McEwen JB, Wiernik G, Perrins DJD, Sutherland I (1978) Hyperbaric oxygen and radiotherapy: a Medical Research Council trial in carcinoma of the cervix. Br J Radiol 51: 879–887

    Article  PubMed  CAS  Google Scholar 

  • Weichselbaum RR, Dahlberg W, Little JB, Ervin TJ, Miller D, Hellman S, Rheinwald JG (1984) Cellular X-ray repair parameters of early passage squamous cell carcinoma lines derived from patients with known responses to radiotherapy. Br J Cancer 49: 595–601

    Article  PubMed  CAS  Google Scholar 

  • Weichselbaum RR, Little JB (1982) The differential response of human tumours to fractionated radiation may be due to a post-radiation repair process. Br J Cancer 46: 532–537

    Article  PubMed  CAS  Google Scholar 

  • Weichselbaum RR, Nove J, Little JB (1978) Deficient recovery from potentially lethal radiation damage in ataxia telangiectasia and xeroderma pigmentosum. Nature 271: 261–262

    Article  PubMed  CAS  Google Scholar 

  • Weichselbaum RR, Nove J, Little JB (1980) Radiation response of human tumor cells in vitro. In: Meyn RE, Withers HR (eds) Radiation Biology in Cancer Research. Raven Press, New York, pp 345–351

    Google Scholar 

  • White RAS, Workman P, Brown JM (1980) The pharmacokinetics, tumor and neural tissue penetrating properties in the dog of SR-2508 and SR-2555–hydrophilic radio-sensitizers potentially less toxic than misonidazole. Radiat Res 84: 542–561

    Article  PubMed  CAS  Google Scholar 

  • Whitmore GF, Gulyas S, Kotalik J (1970) Recovery from radiation damage in mammalian cells. In: Bond VP, Suit HD, Marcial V (eds) Time and dose relationships in radiation biology as applied to radiotherapy. Brookhaven National Laboratory, Upton, New York, pp 41–46

    Google Scholar 

  • Williams MV, Denekamp J, Fowler JF (1984) Dose-response relationships for human tumors: Implications for clinical trials of dose modifying agents. Int J Radiat Oncol Biol Phys 10: 1703–1707

    Article  PubMed  CAS  Google Scholar 

  • Williams MV, Denekamp J, Minchinton AI, Stratford MRL (1982) In vivo assessment of basic 2-nitroimidazole radiosensitizers. Br J Cancer 46: 127–137

    Article  PubMed  CAS  Google Scholar 

  • Willson RL, Emmerson PT (1970) Reaction of triacetoneN-oxyl with radiation-induced radicals from DNA and from deoxyribonucleotides in aqueous solution. In: Moroson HL, Quintiliani M (eds) Radiation Protection and Sensitization. Taylor and Francis Ltd: London, pp 72–79

    Google Scholar 

  • Yu NY, Brown JM (1984) Depletion of glutathione in vivo as a method of improving the therapeutic ratio of misonidazole and SR 2508. Int J Radiat Oncol Biol Phys 10: 1265–1269

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brown, J.M. (1988). Sensitizers in Radiotherapy. In: Withers, H.R., Peters, L.J. (eds) Innovations in Radiation Oncology. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83101-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83101-0_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83103-4

  • Online ISBN: 978-3-642-83101-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics