Laminarization by a Strong Magnetic Field

  • C. Bardos
  • C. Sulem
  • P. L. Sulem
Conference paper

Abstract

A fundamental question in mathematical physics is whether the problem is well posed. In other words, does it have a unique solution? Concerning the dynamics of incompressible fluids, the answer is very incomplete, especially in three-dimensions. For example, one does not know whether the 3D Navier-Stokes equation is well posed for all time. Only the existence of (possibly non unique) weak solutions, i.e. solutions in the sense of distribution, is established[1].

Keywords

Sulem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. [1]
    Leray, J., Acta Mathematica, 63, 1934, 193.CrossRefMATHMathSciNetGoogle Scholar
  2. [2]
    Wolibner, W.; Math. Z., 37, 1933.Google Scholar
  3. [3]
    Sulem, C., C.R.Ac.Sc. Paris, 285, Série A, 1977, 365.Google Scholar
  4. [4]
    Frisch, U., Pouquet, A., Sulem, P.L., Meneguzzi, M., J. Méca Theor. Appl., Special issue on two dimensional turbulence, 1983, 191.Google Scholar
  5. [5]
    Kraichnan, R.H., Phys. Fluids 8, 1965, 1365.MathSciNetGoogle Scholar
  6. [6]
    Sulem, C., Fournier, J.D., Frisch, U., Sulern, P.L., C.P.Ac.Sc., Paris, A268, 1979, 571.ADSGoogle Scholar
  7. [7]
    Fardas, C., Sulem, C., Sulern, F.L., Long time dynamics of a conductive fluid in the presence of a strong magnetic field, Submitted to Trans. Amer. Math. Soc.Google Scholar
  8. [8]
    Klainerman, S., Comm. Pure Appl. Math., 36, 1983, 325.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • C. Bardos
    • 1
  • C. Sulem
    • 2
    • 3
  • P. L. Sulem
    • 4
  1. 1.Ecole Normale SupérieureParis and Université Paris XIIIParisFrance
  2. 2.C.N.R.S.Ecole Normale SupérieureParisFrance
  3. 3.Ben-Gurion University of the NegevBeer-ShevaIsrael
  4. 4.C.N.R.S.Observatoire de Nice and Tel-Aviv UniversityTel-AvivIsrael

Personalised recommendations