Advertisement

Transient Behavior of a Stably Stratified Homogeneous Turbulent Flow

  • R. C. Sanderson
  • J. C. Hill
  • J. R. Herring
Conference paper

Abstract

The direct interaction approximation (KRAICHNAN [1]) is used to study the problem of scalar transport by a uniform mean scalar gradient in a decaying homogeneous turbulent flow. Cases that are studied include a passive scalar, such as temperature, and an active scalar, such as density, in a stably stratified flow. The direct interaction approximation is shown, from these preliminary results, to correctly predict the qualitative dynamics associated with these two problems.

Keywords

Passive Scalar Stable Stratification Scalar Transport Scalar Gradient Qualitative Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. H. Kraichnan: Phys. Fluids 7, 1048 (1964)CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    S. Corrsin: J. Appl. Phys. 23, 113 (1952)CrossRefMATHADSMathSciNetGoogle Scholar
  3. 3.
    H. K. Wiskind: J. Geophys. Res. 67, 3033 (1962)CrossRefADSGoogle Scholar
  4. 4.
    A. Sirivat, Z. Warhaft: J. Fluid Mech. 128, 323 (1983)CrossRefADSGoogle Scholar
  5. 5.
    R. Budwig, S. Tavoularis, S. Corrsin: J. Fluid Mech. 153, 441 (1985)CrossRefADSGoogle Scholar
  6. 6.
    J. C. Hill: Chem. Eng. Comm. 12, 69 (1981)CrossRefGoogle Scholar
  7. 7.
    C. H. Gibson: In Nonlinear Properties of Internal Waves, ed. by B. West, A.I.P. Conf. Proc. no. 76 ( A.I.P., New York 1981 ) p. 159Google Scholar
  8. 8.
    D. C. Stillinger, K. N. Helland, C. W. van Atta: J. Fluid Mech. 131, 91 (1983)CrossRefADSGoogle Scholar
  9. 9.
    J. J. Riley, R. W. Metcalfe, M. A. Weissman: In Nonlinear Properties of Internal Waves, ed. by B. West, A.I.P. Conf. Proc. no. 76 ( A.I.P., New York 1981 ) p. 79Google Scholar
  10. 10.
    J. R. Herring, O. Métais: “Numerical and Theoretical Calculations of Stratified Turbulence”, presented at the Tenth Symposium on Turbulence, (University of Missouri-Rolla 1986 )Google Scholar
  11. 11.
    W. P. Dannevik: Two-Point Closure Study of Covariance Budgets for Turbulent Rayleigh-Benard Convection, Ph.D. Thesis (Saint Louis University, 1984 )Google Scholar
  12. 12.
    J. R. Herring: Phys. Fluids 17, 859 (1974)CrossRefMATHADSGoogle Scholar
  13. 13.
    U. Schumann, J. R. Herring: J. Fluid Mech. 76, 755 (1976)CrossRefMATHADSGoogle Scholar
  14. 14.
    R. H. Kraichnan: Phys. Fluids 7, 1030 (1964)CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • R. C. Sanderson
    • 1
  • J. C. Hill
    • 1
  • J. R. Herring
    • 2
  1. 1.Iowa State UniversityAmesUSA
  2. 2.National Center for Atmospheric ResearchBoulderUSA

Personalised recommendations