Skip to main content

Dynamic Hyperinflation: Intrinsic PEEP and Its Ramifications in Patients with Respiratory Failure

  • Chapter
Book cover Update 1987

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 3))

Abstract

Pulmonary hyperinflation, which is defined as a consistent increase in the end-expiratory lung volume above the predicted functional residual capacity (FRC), is a characteristic abnormality in patients with acute or chronic airways obstruction [1]. While this may be the result of increased lung compliance (e.g. pulmonary emphysema), dynamic factors may also be responsible. For example, when there is a significant increase in airway resistance, the rate of lung emptying is unduly slowed and, by necessity, is interrupted by the next inspiratory effort. When the breathing frequency increases, as with exercise or increased ventilatory demands for other reasons, the expiratory time shortens and hence the end-expiratory lung volume may increase above the relaxed FRC position (elastic equilibrium volume), i.e. hyperinflation ensues. This process is referred to as dynamic hyperinflation. Expiratory flow may also be retarded by other mechanisms which contribute to the development of dynamic hyperinflation. These include activity of the inspiratory muscles during expiration (post-inspiration inspiratory activity) as well as activation of laryngeal adductor muscles with expiratory narrowing of the glottic aperture [10, 21, 24, 25].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bates DV, Macklem PT, Christie RV (eds) (1971) Respiratory function in disease. WB Saunders Company, Philadelphia PA

    Google Scholar 

  2. Behrakis PK, Higgs BD, Baydur A, Zin WA, Milic-Emili J (1983) Respiratory mechanics during halothane anesthesia and anesthesia-paralysis in man. J Appl Physiol 55:1085–1092

    PubMed  CAS  Google Scholar 

  3. Bellemare F, Grassino A (1983) Force reserve of the diaphragm in patients with chronic obstructive pulmonary disease. J Appl Physiol 55:8–15

    PubMed  CAS  Google Scholar 

  4. Bergman NA (1972) Intrapulmonary gas trapping during mechanical ventilation at rapid frequencies. Anesthesiology 37:626–633

    Article  PubMed  CAS  Google Scholar 

  5. Bone RC (1976) Diagnosis of causes for acute respiratory distress by pressure-volume curves. Chest 70:740–746

    Article  PubMed  CAS  Google Scholar 

  6. Buchler B, Magder S, Katsardis H, Jammes Y, Roussos C (1985) Effects of pleural pressure and abdominal pressure on diaphragmatic blood flow. J Appl Physiol 58:691–697

    PubMed  CAS  Google Scholar 

  7. Campbell EJM, Dickinson CJ, Dinnick OP, Howell JBL (1961) The immediate effects of threshold loads on the breathing of men and dogs. Clin Sci 21:309–320

    PubMed  CAS  Google Scholar 

  8. Chapin JC, Downs JB, Douglas ME, Murphy EJ, Ruiz BC (1979) Lung expansion, airway pressure transmission, and positive end-expiratory pressure. Arch Surg 114:1193–1197

    Article  PubMed  CAS  Google Scholar 

  9. Colgan FJ, Barrow RE, Fanning GL (1971) Constant positive-pressure breathing and cardiorespiratory function. Anesthesiology 34:145–151

    Article  PubMed  CAS  Google Scholar 

  10. Collett PW, Brancatisano T, Engel LA (1983) Changes in the glottic aperture during bronchial asthma. Am Rev Respir Dis 128:719–723

    PubMed  CAS  Google Scholar 

  11. Feeley TW, Hedley-White J (1975) Weaning from controlled ventilation and supplemental oxygen. N Engl J Med 292:903–906

    Article  PubMed  CAS  Google Scholar 

  12. Field S, Kelly SM, Macklem PT (1982) The oxygen cost of breathing in patients with cardiorespiratory failure. Am Rev Respir Dis 126:9–13

    PubMed  CAS  Google Scholar 

  13. Fleury B, Murciano D, Talamo C, Aubier M, Pariente R, Milic-Emili J (1985) Work of breathing in patients with chronic obstructive pulmonary disease in acute respiratory failure. Am Rev Respir Dis 131:822–827

    PubMed  CAS  Google Scholar 

  14. Gottfried SB, Rossi A, Higgs BD, et al (1985) Non-invasive determination of respiratory system mechanics during mechanical ventilation for acute respiratory failure. Am Rev Respir Dis 131:414–420

    PubMed  CAS  Google Scholar 

  15. Kelly SM, Rosa A, Field S, Coughlin M, Shizgal HM, Macklem PT (1984) Inspiratory muscle strength and body composition in patients receiving total parenteral nutrition therapy. Am Rev Respir Dis 130:33–37

    PubMed  CAS  Google Scholar 

  16. Kimball WR, Leith DE, Robins AG (1982) Dynamic hyperinflation and ventilator dependence in chronic obstructive pulmonary disease. Am Rev Respir Dis 126:991–995

    PubMed  CAS  Google Scholar 

  17. Lavietes MH, Rochester DF (1981) Assessment of airway function during assisted ventilation. Lung 159:219–229

    Article  PubMed  CAS  Google Scholar 

  18. LeSouef PN, England SJ, Bryan AC (1984) Passive respiratory mechanics in newborns and children. Am Rev Respir Dis 129:552–556

    PubMed  CAS  Google Scholar 

  19. Macklem PT. Hyperinflation (1984) Am Rev Respir Dis 129:1–2

    PubMed  CAS  Google Scholar 

  20. Marini JJ, Capps JS, Culver BH (1985) The inspiratory work of breathing during assisted mechanical ventilation. Chest 87:612–18

    Article  PubMed  CAS  Google Scholar 

  21. Martin J, Powell E, Shore S, Emrich J, Engel LA (1980) The role of the respiratory muscles in the hyperinflation of bronchial asthma. Am Rev Respir Dis 123:441–447

    Google Scholar 

  22. Martin JG, Shore S, Engel LA (1982) Effect of continuous positive airway pressure on respiratory mechanics and pattern of breathing in induced asthma. Am Rev Respir Dis 126:812–817

    PubMed  CAS  Google Scholar 

  23. Mead J (1979) Responses to loaded breathing. Bull Eur Physiopath Respir 15:61–71(Suppl)

    Google Scholar 

  24. Mortola JP, Milic-Emili J, Noworaj A, Smith B, Fox G, Weeks S (1984) Muscle pressure and flow during expiration in infants. Am Rev Respir Dis 129:49–53

    PubMed  CAS  Google Scholar 

  25. Muller N, Bryan AC, Zamel N (1980) Tonic inspiratory muscle activity as a cause of hyperinflation in histamine-induced asthma. J Appl Physiol 49:869–874

    PubMed  CAS  Google Scholar 

  26. Murciano D, Aubier M, Bussi S, Derenne J-Ph, Pariente R, Milic-Emili J (1982) Comparison of esophageal, tracheal, and mouth occlusion pressure in patients with chronic obstructive pulmonary disease during acute respiratory failure. Am Rev Respir Dis 126:837–841

    PubMed  CAS  Google Scholar 

  27. Pepe PE, Marini JJ (1982) Occult positive end-expiratory pressure in mechanically ventilated patients with airflow obstruction. Am Rev Respir Dis 126:166–170

    PubMed  CAS  Google Scholar 

  28. Rochester DJ, Arora NS (1983) Respiratory muscle failure. Med Clin N Amer 67:573–597

    PubMed  CAS  Google Scholar 

  29. Rossi A, Gottfried SB, Zocchi L, et al (1985) Measurement of static compliance of the total respiratory system in patients with acute respiratory failure during mechanical ventilation: the effect of intrinsic positive end-expiratory pressure. Am Rev Respir Dis 131:672–677

    PubMed  CAS  Google Scholar 

  30. Saetta M, Rossi A, Gottfried SB, et al (1985) Expiratory volume-flow relationship during mechanical ventilation in patients with acute respiratory failure. Am Rev Respir Dis 131:A132

    Google Scholar 

  31. Sahn SA, Lakshminarayan S (1973) Bedside criteria for discontinuation of mechanical ventilation. Chest 63:1002–1005

    Article  PubMed  CAS  Google Scholar 

  32. Sharp JT, van Lith P, Nuchprayoon CV, Briney R, Johnson FN (1968) The thorax in chronic obstructive lung disease. Am J Med 44:39–46

    Article  Google Scholar 

  33. Suter PM, Fairley HB, Isenberg MD (1975) Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med 292:284–289

    Article  PubMed  CAS  Google Scholar 

  34. Sybrecht GW, Taubner EM, Bohm MM, Fabel H (1979) Mechanical properties of the respiratory system and mouth-occlusion pressure in patients acutely intoxicated with hypnotics. Lung 156:49–56

    Article  PubMed  CAS  Google Scholar 

  35. Vinegar, Sinnett EE, Leith DE (1979) Dynamic mechanisms determine functional residual capacity in mice, Mus musculus. J Appl Physiol 46:867–871

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Milic-Emili, J., Gottfried, S.B., Rossi, A. (1987). Dynamic Hyperinflation: Intrinsic PEEP and Its Ramifications in Patients with Respiratory Failure. In: Vincent, J.L. (eds) Update 1987. Update in Intensive Care and Emergency Medicine, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83042-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83042-6_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-17576-6

  • Online ISBN: 978-3-642-83042-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics